.. AUTO-GENERATED FILE -- DO NOT EDIT! .. _example_reconst_gqi: =============================================== Reconstruct with Generalized Q-Sampling Imaging =============================================== We show how to apply Generalized Q-Sampling Imaging [Yeh2010]_ to diffusion MRI datasets. You can think of GQI as an analytical version of DSI orientation distribution function (ODF) (Garyfallidis, PhD thesis, 2012). First import the necessary modules: :: import numpy as np from dipy.data import fetch_taiwan_ntu_dsi, read_taiwan_ntu_dsi, get_sphere from dipy.reconst.gqi import GeneralizedQSamplingModel from dipy.direction import peaks_from_model Download and read the data for this tutorial. :: fetch_taiwan_ntu_dsi() img, gtab = read_taiwan_ntu_dsi() img contains a nibabel Nifti1Image object (data) and gtab contains a ``GradientTable`` object (gradient information e.g. b-values). For example to read the b-values it is possible to write:: print(gtab.bvals) Load the raw diffusion data and the affine. :: data = img.get_data() print('data.shape (%d, %d, %d, %d)' % data.shape) data.shape ``(96, 96, 60, 203)`` This dataset has anisotropic voxel sizes, therefore reslicing is necessary. :: affine = img.affine Read the voxel size from the image header. :: voxel_size = img.header.get_zooms()[:3] Instantiate the model and apply it to the data. :: gqmodel = GeneralizedQSamplingModel(gtab, sampling_length=3) The parameter ``sampling_length`` is used here to Lets just use one slice only from the data. :: dataslice = data[:, :, data.shape[2] // 2] mask = dataslice[..., 0] > 50 gqfit = gqmodel.fit(dataslice, mask=mask) Load an ODF reconstruction sphere :: sphere = get_sphere('repulsion724') Calculate the ODFs with this specific sphere :: ODF = gqfit.odf(sphere) print('ODF.shape (%d, %d, %d)' % ODF.shape) ODF.shape ``(96, 96, 724)`` Using ``peaks_from_model`` we can find the main peaks of the ODFs and other properties. :: gqpeaks = peaks_from_model(model=gqmodel, data=dataslice, sphere=sphere, relative_peak_threshold=.5, min_separation_angle=25, mask=mask, return_odf=False, normalize_peaks=True) gqpeak_values = gqpeaks.peak_values ``gqpeak_indices`` show which sphere points have the maximum values. :: gqpeak_indices = gqpeaks.peak_indices It is also possible to calculate GFA. :: GFA = gqpeaks.gfa print('GFA.shape (%d, %d)' % GFA.shape) With parameter ``return_odf=True`` we can obtain the ODF using ``gqpeaks.ODF`` :: gqpeaks = peaks_from_model(model=gqmodel, data=dataslice, sphere=sphere, relative_peak_threshold=.5, min_separation_angle=25, mask=mask, return_odf=True, normalize_peaks=True) This ODF will be of course identical to the ODF calculated above as long as the same data and mask are used. :: np.sum(gqpeaks.odf != ODF) == 0 True The advantage of using ``peaks_from_model`` is that it calculates the ODF only once and saves it or deletes if it is not necessary to keep. .. [Yeh2010] Yeh, F-C et al., Generalized Q-sampling imaging, IEEE Transactions on Medical Imaging, vol 29, no 9, 2010. .. include:: ../links_names.inc .. admonition:: Example source code You can download :download:`the full source code of this example <./reconst_gqi.py>`. This same script is also included in the dipy source distribution under the :file:`doc/examples/` directory.