.. AUTO-GENERATED FILE -- DO NOT EDIT! .. _example_reconst_shore_metrics: =========================== Calculate SHORE scalar maps =========================== We show how to calculate two SHORE-based scalar maps: return to origin probability (RTOP) [Descoteaux2011]_ and mean square displacement (MSD) [Wu2007]_, [Wu2008]_ on your data. SHORE can be used with any multiple b-value dataset like multi-shell or DSI. First import the necessary modules: :: import nibabel as nib import numpy as np import matplotlib.pyplot as plt from dipy.data import fetch_taiwan_ntu_dsi, read_taiwan_ntu_dsi, get_sphere from dipy.data import dsi_voxels from dipy.reconst.shore import ShoreModel Download and read the data for this tutorial. :: fetch_taiwan_ntu_dsi() img, gtab = read_taiwan_ntu_dsi() img contains a nibabel Nifti1Image object (data) and gtab contains a GradientTable object (gradient information e.g. b-values). For example, to read the b-values it is possible to write print(gtab.bvals). Load the raw diffusion data and the affine. :: data = img.get_data() affine = img.affine print('data.shape (%d, %d, %d, %d)' % data.shape) Instantiate the Model. :: asm = ShoreModel(gtab) Let's just use only one slice only from the data. :: dataslice = data[30:70, 20:80, data.shape[2] // 2] Fit the signal with the model and calculate the SHORE coefficients. :: asmfit = asm.fit(dataslice) Calculate the analytical RTOP on the signal that corresponds to the integral of the signal. :: print('Calculating... rtop_signal') rtop_signal = asmfit.rtop_signal() Now we calculate the analytical RTOP on the propagator, that corresponds to its central value. :: print('Calculating... rtop_pdf') rtop_pdf = asmfit.rtop_pdf() In theory, these two measures must be equal, to show that we calculate the mean square error on this two measures. :: mse = np.sum((rtop_signal - rtop_pdf) ** 2) / rtop_signal.size print("MSE = %f" % mse) MSE = 0.000000 Let's calculate the analytical mean square displacement on the propagator. :: print('Calculating... msd') msd = asmfit.msd() Show the maps and save them to a file. :: fig = plt.figure(figsize=(6, 6)) ax1 = fig.add_subplot(2, 2, 1, title='rtop_signal') ax1.set_axis_off() ind = ax1.imshow(rtop_signal.T, interpolation='nearest', origin='lower') plt.colorbar(ind) ax2 = fig.add_subplot(2, 2, 2, title='rtop_pdf') ax2.set_axis_off() ind = ax2.imshow(rtop_pdf.T, interpolation='nearest', origin='lower') plt.colorbar(ind) ax3 = fig.add_subplot(2, 2, 3, title='msd') ax3.set_axis_off() ind = ax3.imshow(msd.T, interpolation='nearest', origin='lower', vmin=0) plt.colorbar(ind) plt.savefig('SHORE_maps.png') .. figure:: SHORE_maps.png :align: center RTOP and MSD calculated using the SHORE model. References ---------- .. [Descoteaux2011] Descoteaux M. et al., "Multiple q-shell diffusion propagator imaging", Medical Image Analysis, vol 15, No. 4, p. 603-621, 2011. .. [Wu2007] Wu Y. et al., "Hybrid diffusion imaging", NeuroImage, vol 36, p. 617-629, 2007. .. [Wu2008] Wu Y. et al., "Computation of Diffusion Function Measures in q-Space Using Magnetic Resonance Hybrid Diffusion Imaging", IEEE TRANSACTIONS ON MEDICAL IMAGING, vol. 27, No. 6, p. 858-865, 2008. .. include:: ../links_names.inc .. admonition:: Example source code You can download :download:`the full source code of this example <./reconst_shore_metrics.py>`. This same script is also included in the dipy source distribution under the :file:`doc/examples/` directory.