.. AUTO-GENERATED FILE -- DO NOT EDIT! .. _example_tracking_bootstrap_peaks: ==================================================== Bootstrap and Closest Peak Direction Getters Example ==================================================== This example shows how choices in direction-getter impact fiber tracking results by demonstrating the bootstrap direction getter (a type of probabilistic tracking, as described in Berman et al. (2008) [Berman2008]_ a nd the closest peak direction getter (a type of deterministic tracking). (Amirbekian, PhD thesis, 2016) This example is an extension of the :ref:`example_tracking_introduction_eudx` example. Let's start by loading the necessary modules for executing this tutorial. :: # Enables/disables interactive visualization interactive = False from dipy.data import read_stanford_labels, small_sphere from dipy.direction import BootDirectionGetter, ClosestPeakDirectionGetter from dipy.io.stateful_tractogram import Space, StatefulTractogram from dipy.io.streamline import save_trk from dipy.reconst.csdeconv import (ConstrainedSphericalDeconvModel, auto_response) from dipy.reconst.shm import CsaOdfModel from dipy.tracking import utils from dipy.tracking.local_tracking import LocalTracking from dipy.tracking.streamline import Streamlines from dipy.tracking.stopping_criterion import ThresholdStoppingCriterion from dipy.viz import window, actor, colormap, has_fury hardi_img, gtab, labels_img = read_stanford_labels() data = hardi_img.get_data() labels = labels_img.get_data() affine = hardi_img.affine seed_mask = (labels == 2) white_matter = (labels == 1) | (labels == 2) seeds = utils.seeds_from_mask(seed_mask, affine, density=1) Next, we fit the CSD model. :: response, ratio = auto_response(gtab, data, roi_radius=10, fa_thr=0.7) csd_model = ConstrainedSphericalDeconvModel(gtab, response, sh_order=6) csd_fit = csd_model.fit(data, mask=white_matter) we use the CSA fit to calculate GFA, which will serve as our stopping criterion. :: csa_model = CsaOdfModel(gtab, sh_order=6) gfa = csa_model.fit(data, mask=white_matter).gfa stopping_criterion = ThresholdStoppingCriterion(gfa, .25) Next, we need to set up our two direction getters :: Example #1: Bootstrap direction getter with CSD Model ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ :: boot_dg_csd = BootDirectionGetter.from_data(data, csd_model, max_angle=30., sphere=small_sphere) boot_streamline_generator = LocalTracking(boot_dg_csd, stopping_criterion, seeds, affine, step_size=.5) streamlines = Streamlines(boot_streamline_generator) sft = StatefulTractogram(streamlines, hardi_img, Space.RASMM) save_trk(sft, "tractogram_bootstrap_dg.trk") if has_fury: r = window.Renderer() r.add(actor.line(streamlines, colormap.line_colors(streamlines))) window.record(r, out_path='tractogram_bootstrap_dg.png', size=(800, 800)) if interactive: window.show(r) .. figure:: tractogram_bootstrap_dg.png :align: center **Corpus Callosum Bootstrap Probabilistic Direction Getter** We have created a bootstrapped probabilistic set of streamlines. If you repeat the fiber tracking (keeping all inputs the same) you will NOT get exactly the same set of streamlines. :: Example #2: Closest peak direction getter with CSD Model ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ :: pmf = csd_fit.odf(small_sphere).clip(min=0) peak_dg = ClosestPeakDirectionGetter.from_pmf(pmf, max_angle=30., sphere=small_sphere) peak_streamline_generator = LocalTracking(peak_dg, stopping_criterion, seeds, affine, step_size=.5) streamlines = Streamlines(peak_streamline_generator) sft = StatefulTractogram(streamlines, hardi_img, Space.RASMM) save_trk(sft, "closest_peak_dg_CSD.trk") if has_fury: r = window.Renderer() r.add(actor.line(streamlines, colormap.line_colors(streamlines))) window.record(r, out_path='tractogram_closest_peak_dg.png', size=(800, 800)) if interactive: window.show(r) .. figure:: tractogram_closest_peak_dg.png :align: center **Corpus Callosum Closest Peak Deterministic Direction Getter** We have created a set of streamlines using the closest peak direction getter, which is a type of deterministic tracking. If you repeat the fiber tracking (keeping all inputs the same) you will get exactly the same set of streamlines. :: References ---------- .. [Berman2008] Berman, J. et al., Probabilistic streamline q-ball tractography using the residual bootstrap, NeuroImage, vol 39, no 1, 2008 .. include:: ../links_names.inc .. admonition:: Example source code You can download :download:`the full source code of this example <./tracking_bootstrap_peaks.py>`. This same script is also included in the dipy source distribution under the :file:`doc/examples/` directory.