.. AUTO-GENERATED FILE -- DO NOT EDIT! .. _example_viz_bundles: ======================================== Visualize bundles and metrics on bundles ======================================== First, let's download some available datasets. Here we are using a dataset which provides metrics and bundles. :: import numpy as np from dipy.viz import window, actor from dipy.data import fetch_bundles_2_subjects, read_bundles_2_subjects from dipy.tracking.streamline import transform_streamlines fetch_bundles_2_subjects() dix = read_bundles_2_subjects(subj_id='subj_1', metrics=['fa'], bundles=['cg.left', 'cst.right']) Store fractional anisotropy. :: fa = dix['fa'] Store grid to world transformation matrix. :: affine = dix['affine'] Store the cingulum bundle. A bundle is a list of streamlines. :: bundle = dix['cg.left'] It happened that this bundle is in world coordinates and therefore we need to transform it into native image coordinates so that it is in the same coordinate space as the ``fa`` image. :: bundle_native = transform_streamlines(bundle, np.linalg.inv(affine)) Show every streamline with an orientation color =============================================== This is the default option when you are using ``line`` or ``streamtube``. :: renderer = window.Renderer() stream_actor = actor.line(bundle_native) renderer.set_camera(position=(-176.42, 118.52, 128.20), focal_point=(113.30, 128.31, 76.56), view_up=(0.18, 0.00, 0.98)) renderer.add(stream_actor) # Uncomment the line below to show to display the window # window.show(renderer, size=(600, 600), reset_camera=False) window.record(renderer, out_path='bundle1.png', size=(600, 600)) .. figure:: bundle1.png :align: center One orientation color for every streamline. You may wonder how we knew how to set the camera. This is very easy. You just need to run ``window.show`` once see how you want to see the object and then close the window and call the ``camera_info`` method which prints the position, focal point and view up vectors of the camera. :: renderer.camera_info() Show every point with a value from a volume with default colormap ================================================================= Here we will need to input the ``fa`` map in ``streamtube`` or ``line``. :: renderer.clear() stream_actor2 = actor.line(bundle_native, fa, linewidth=0.1) We can also show the scalar bar. :: bar = actor.scalar_bar() renderer.add(stream_actor2) renderer.add(bar) # window.show(renderer, size=(600, 600), reset_camera=False) window.record(renderer, out_path='bundle2.png', size=(600, 600)) .. figure:: bundle2.png :align: center Every point with a color from FA. Show every point with a value from a volume with your colormap ============================================================== Here we will need to input the ``fa`` map in ``streamtube`` :: renderer.clear() hue = (0.0, 0.0) # red only saturation = (0.0, 1.0) # white to red lut_cmap = actor.colormap_lookup_table(hue_range=hue, saturation_range=saturation) stream_actor3 = actor.line(bundle_native, fa, linewidth=0.1, lookup_colormap=lut_cmap) bar2 = actor.scalar_bar(lut_cmap) renderer.add(stream_actor3) renderer.add(bar2) # window.show(renderer, size=(600, 600), reset_camera=False) window.record(renderer, out_path='bundle3.png', size=(600, 600)) .. figure:: bundle3.png :align: center Every point with a color from FA using a non default colormap. Show every bundle with a specific color ======================================== You can have a bundle with a specific color. In this example, we are chosing orange. :: renderer.clear() stream_actor4 = actor.line(bundle_native, (1., 0.5, 0), linewidth=0.1) renderer.add(stream_actor4) # window.show(renderer, size=(600, 600), reset_camera=False) window.record(renderer, out_path='bundle4.png', size=(600, 600)) .. figure:: bundle4.png :align: center Entire bundle with a specific color. Show every streamline of a bundle with a different color ======================================================== Let's make a colormap where every streamline of the bundle is colored by its length. :: renderer.clear() from dipy.tracking.streamline import length lengths = length(bundle_native) hue = (0.5, 0.5) # blue only saturation = (0.0, 1.0) # black to white lut_cmap = actor.colormap_lookup_table( scale_range=(lengths.min(), lengths.max()), hue_range=hue, saturation_range=saturation) stream_actor5 = actor.line(bundle_native, lengths, linewidth=0.1, lookup_colormap=lut_cmap) renderer.add(stream_actor5) bar3 = actor.scalar_bar(lut_cmap) renderer.add(bar3) # window.show(renderer, size=(600, 600), reset_camera=False) window.record(renderer, out_path='bundle5.png', size=(600, 600)) .. figure:: bundle5.png :align: center Color every streamline by the length of the streamline Show every point of every streamline with a different color ============================================================ In this case in which we want to have a color per point and per streamline, we can create a list of the colors to correspond to the list of streamlines (bundles). Here in ``colors`` we will insert some random RGB colors. :: renderer.clear() colors = [np.random.rand(*streamline.shape) for streamline in bundle_native] stream_actor6 = actor.line(bundle_native, colors, linewidth=0.2) renderer.add(stream_actor6) # window.show(renderer, size=(600, 600), reset_camera=False) window.record(renderer, out_path='bundle6.png', size=(600, 600)) .. figure:: bundle6.png :align: center Random colors per points per streamline. In summary, we showed that there are many useful ways for visualizing maps on bundles. .. admonition:: Example source code You can download :download:`the full source code of this example <./viz_bundles.py>`. This same script is also included in the dipy source distribution under the :file:`doc/examples/` directory.