.. AUTO-GENERATED FILE -- DO NOT EDIT! .. _example_viz_roi_contour: ====================================================== Visualization of ROI Surface Rendered with Streamlines ====================================================== Here is a simple tutorial following the probabilistic CSA Tracking Example in which we generate a dataset of streamlines from a corpus callosum ROI, and then display them with the seed ROI rendered in 3D with 50% transparency. :: from dipy.data import read_stanford_labels from dipy.reconst.shm import CsaOdfModel from dipy.data import default_sphere from dipy.direction import peaks_from_model from dipy.tracking.stopping_criterion import ThresholdStoppingCriterion from dipy.tracking import utils from dipy.tracking.local_tracking import LocalTracking from dipy.tracking.streamline import Streamlines from dipy.viz import actor, window, colormap as cmap First, we need to generate some streamlines. For a more complete description of these steps, please refer to the CSA Probabilistic Tracking Tutorial. :: hardi_img, gtab, labels_img = read_stanford_labels() data = hardi_img.get_data() labels = labels_img.get_data() affine = hardi_img.affine white_matter = (labels == 1) | (labels == 2) csa_model = CsaOdfModel(gtab, sh_order=6) csa_peaks = peaks_from_model(csa_model, data, default_sphere, relative_peak_threshold=.8, min_separation_angle=45, mask=white_matter) stopping_criterion = ThresholdStoppingCriterion(csa_peaks.gfa, .25) seed_mask = labels == 2 seeds = utils.seeds_from_mask(seed_mask, affine, density=[1, 1, 1]) # Initialization of LocalTracking. The computation happens in the next step. streamlines = LocalTracking(csa_peaks, stopping_criterion, seeds, affine, step_size=2) # Compute streamlines and store as a list. streamlines = Streamlines(streamlines) We will create a streamline actor from the streamlines. :: streamlines_actor = actor.line(streamlines, cmap.line_colors(streamlines)) Next, we create a surface actor from the corpus callosum seed ROI. We provide the ROI data, the affine, the color in [R,G,B], and the opacity as a decimal between zero and one. Here, we set the color as blue/green with 50% opacity. :: surface_opacity = 0.5 surface_color = [0, 1, 1] seedroi_actor = actor.contour_from_roi(seed_mask, affine, surface_color, surface_opacity) Next, we initialize a ''Renderer'' object and add both actors to the rendering. :: ren = window.ren() ren.add(streamlines_actor) ren.add(seedroi_actor) If you uncomment the following line, the rendering will pop up in an interactive window. :: interactive = False if interactive: window.show(ren) window.record(ren, out_path='contour_from_roi_tutorial.png', size=(1200, 900)) .. figure:: contour_from_roi_tutorial.png :align: center **A top view of corpus callosum streamlines with the blue transparent seed ROI in the center**. .. admonition:: Example source code You can download :download:`the full source code of this example <./viz_roi_contour.py>`. This same script is also included in the dipy source distribution under the :file:`doc/examples/` directory.