Source code for dipy.align.imaffine
"""Affine image registration module consisting of the following classes:
AffineMap: encapsulates the necessary information to perform affine
    transforms between two domains, defined by a `static` and a `moving`
    image. The `domain` of the transform is the set of points in the
    `static` image's grid, and the `codomain` is the set of points in
    the `moving` image. When we call the `transform` method, `AffineMap`
    maps each point `x` of the domain (`static` grid) to the codomain
    (`moving` grid) and interpolates the `moving` image at that point
    to obtain the intensity value to be placed at `x` in the resulting
    grid. The `transform_inverse` method performs the opposite operation
    mapping points in the codomain to points in the domain.
ParzenJointHistogram: computes the marginal and joint distributions of
    intensities of a pair of images, using Parzen windows
    :footcite:p:`Parzen1962` with a cubic spline kernel, as proposed by
    :footcite:t:`Mattes2003`. It also computes the gradient of the joint
    histogram w.r.t. the parameters of a given transform.
MutualInformationMetric: computes the value and gradient of the mutual
    information metric the way `Optimizer` needs them. That is, given
    a set of transform parameters, it will use `ParzenJointHistogram`
    to compute the value and gradient of the joint intensity histogram
    evaluated at the given parameters, and evaluate the value and
    gradient of the histogram's mutual information.
AffineRegistration: it runs the multi-resolution registration, putting
    all the pieces together. It needs to create the scale space of the
    images and run the multi-resolution registration by using the Metric
    and the Optimizer at each level of the Gaussian pyramid. At each
    level, it will setup the metric to compute value and gradient of the
    metric with the input images with different levels of smoothing.
References
----------
.. footbibliography::
"""
from warnings import warn
import numpy as np
import numpy.linalg as npl
import scipy.ndimage as ndimage
from dipy.align import VerbosityLevels, vector_fields as vf
from dipy.align.imwarp import ScaleSpace, get_direction_and_spacings
from dipy.align.parzenhist import (
    ParzenJointHistogram,
    compute_parzen_mi,
    sample_domain_regular,
)
from dipy.align.scalespace import IsotropicScaleSpace
from dipy.core.interpolation import interpolate_scalar_2d, interpolate_scalar_3d
from dipy.core.optimize import Optimizer
from dipy.testing.decorators import warning_for_keywords
_interp_options = ["nearest", "linear"]
_transform_method = {}
_transform_method[(2, "nearest")] = vf.transform_2d_affine_nn
_transform_method[(3, "nearest")] = vf.transform_3d_affine_nn
_transform_method[(2, "linear")] = vf.transform_2d_affine
_transform_method[(3, "linear")] = vf.transform_3d_affine
_number_dim_affine_matrix = 2
[docs]
class AffineMap:
    @warning_for_keywords()
    def __init__(
        self,
        affine,
        *,
        domain_grid_shape=None,
        domain_grid2world=None,
        codomain_grid_shape=None,
        codomain_grid2world=None,
    ):
        """AffineMap.
        Implements an affine transformation whose domain is given by
        `domain_grid` and `domain_grid2world`, and whose co-domain is
        given by `codomain_grid` and `codomain_grid2world`.
        The actual transform is represented by the `affine` matrix, which
        operate in world coordinates. Therefore, to transform a moving image
        towards a static image, we first map each voxel (i,j,k) of the static
        image to world coordinates (x,y,z) by applying `domain_grid2world`.
        Then we apply the `affine` transform to (x,y,z) obtaining (x', y', z')
        in moving image's world coordinates. Finally, (x', y', z') is mapped
        to voxel coordinates (i', j', k') in the moving image by multiplying
        (x', y', z') by the inverse of `codomain_grid2world`. The
        `codomain_grid_shape` is used analogously to transform the static
        image towards the moving image when calling `transform_inverse`.
        If the domain/co-domain information is not provided (None) then the
        sampling information needs to be specified each time the `transform`
        or `transform_inverse` is called to transform images. Note that such
        sampling information is not necessary to transform points defined in
        physical space, such as streamlines.
        Parameters
        ----------
        affine : array, shape (dim + 1, dim + 1)
            the matrix defining the affine transform, where `dim` is the
            dimension of the space this map operates in (2 for 2D images,
            3 for 3D images). If None, then `self` represents the identity
            transformation.
        domain_grid_shape : sequence, shape (dim,), optional
            the shape of the default domain sampling grid. When `transform`
            is called to transform an image, the resulting image will have
            this shape, unless a different sampling information is provided.
            If None, then the sampling grid shape must be specified each time
            the `transform` method is called.
        domain_grid2world : array, shape (dim + 1, dim + 1), optional
            the grid-to-world transform associated with the domain grid.
            If None (the default), then the grid-to-world transform is assumed
            to be the identity.
        codomain_grid_shape : sequence of integers, shape (dim,)
            the shape of the default co-domain sampling grid. When
            `transform_inverse` is called to transform an image, the resulting
            image will have this shape, unless a different sampling
            information is provided. If None (the default), then the sampling
            grid shape must be specified each time the `transform_inverse`
            method is called.
        codomain_grid2world : array, shape (dim + 1, dim + 1)
            the grid-to-world transform associated with the co-domain grid.
            If None (the default), then the grid-to-world transform is assumed
            to be the identity.
        """
        self.set_affine(affine)
        self.domain_shape = domain_grid_shape
        self.domain_grid2world = domain_grid2world
        self.codomain_shape = codomain_grid_shape
        self.codomain_grid2world = codomain_grid2world
[docs]
    def get_affine(self):
        """Return the value of the transformation, not a reference.
        Returns
        -------
        affine : ndarray
            Copy of the transform, not a reference.
        """
        # returning a copy to insulate it from changes outside object
        return self.affine.copy()
[docs]
    def set_affine(self, affine):
        """Set the affine transform (operating in physical space).
        Also sets `self.affine_inv` - the inverse of `affine`, or None if
        there is no inverse.
        Parameters
        ----------
        affine : array, shape (dim + 1, dim + 1)
            the matrix representing the affine transform operating in
            physical space. The domain and co-domain information
            remains unchanged. If None, then `self` represents the identity
            transformation.
        """
        if affine is None:
            self.affine = None
            self.affine_inv = None
            return
        try:
            affine = np.array(affine)
        except Exception as e:
            raise TypeError(
                "Input must be type ndarray, or be convertible" " to one."
            ) from e
        if len(affine.shape) != _number_dim_affine_matrix:
            raise AffineInversionError("Affine transform must be 2D")
        if not affine.shape[0] == affine.shape[1]:
            raise AffineInversionError("Affine transform must be a square matrix")
        if not np.all(np.isfinite(affine)):
            raise AffineInvalidValuesError("Affine transform contains invalid elements")
        # checking on proper augmentation
        # First n-1 columns in last row in matrix contain non-zeros
        if not np.all(affine[-1, :-1] == 0.0):
            raise AffineInvalidValuesError(
                f"First {affine.shape[0] - 1} columns in last row"
                " in matrix contain non-zeros!"
            )
        # Last row, last column in matrix must be 1.0!
        if affine[-1, -1] != 1.0:
            raise AffineInvalidValuesError(
                "Last row, last column in matrix" " is not 1.0!"
            )
        # making a copy to insulate it from changes outside object
        self.affine = affine.copy()
        try:
            self.affine_inv = npl.inv(affine)
        except npl.LinAlgError as e:
            raise AffineInversionError("Affine cannot be inverted") from e
    def __str__(self):
        """Printable format - relies on ndarray's implementation."""
        return str(self.affine)
    def __repr__(self):
        """Reloadable representation - relies on ndarray's implementation."""
        return self.affine.__repr__()
    def __format__(self, format_spec):
        """Implementation various formatting options."""
        if format_spec is None or self.affine is None:
            return str(self.affine)
        elif isinstance(format_spec, str):
            format_spec = format_spec.lower()
            if format_spec in ["", " ", "f", "full"]:
                return str(self.affine)
            # rotation part only (initial 3x3)
            elif format_spec in ["r", "rotation"]:
                return str(self.affine[:-1, :-1])
            # translation part only (4th col)
            elif format_spec in ["t", "translation"]:
                # notice unusual indexing to make it a column vector
                #   i.e. rows from 0 to n-1, cols from n to n
                return str(self.affine[:-1, -1:])
            else:
                allowed_formats_print_map = [
                    "full",
                    "f",
                    "rotation",
                    "r",
                    "translation",
                    "t",
                ]
                raise NotImplementedError(
                    f"Format {format_spec} not recognized or implemented.\n"
                    f"Try one of {allowed_formats_print_map}"
                )
    @warning_for_keywords()
    def _apply_transform(
        self,
        image,
        *,
        interpolation="linear",
        image_grid2world=None,
        sampling_grid_shape=None,
        sampling_grid2world=None,
        resample_only=False,
        apply_inverse=False,
    ):
        """Transform the input image applying this affine transform.
        This is a generic function to transform images using either this
        (direct) transform or its inverse.
        If applying the direct transform (`apply_inverse=False`):
            by default, the transformed image is sampled at a grid defined by
            `self.domain_shape` and `self.domain_grid2world`.
        If applying the inverse transform (`apply_inverse=True`):
            by default, the transformed image is sampled at a grid defined by
            `self.codomain_shape` and `self.codomain_grid2world`.
        If the sampling information was not provided at initialization of this
        transform then `sampling_grid_shape` is mandatory.
        Parameters
        ----------
        image :  2D or 3D array
            the image to be transformed
        interpolation : string, either 'linear' or 'nearest'
            the type of interpolation to be used, either 'linear'
            (for k-linear interpolation) or 'nearest' for nearest neighbor
        image_grid2world : array, shape (dim + 1, dim + 1), optional
            the grid-to-world transform associated with `image`.
            If None (the default), then the grid-to-world transform is assumed
            to be the identity.
        sampling_grid_shape : sequence, shape (dim,), optional
            the shape of the grid where the transformed image must be sampled.
            If None (the default), then `self.domain_shape` is used instead
            (which must have been set at initialization, otherwise an exception
            will be raised).
        sampling_grid2world : array, shape (dim + 1, dim + 1), optional
            the grid-to-world transform associated with the sampling grid
            (specified by `sampling_grid_shape`, or by default
            `self.domain_shape`). If None (the default), then the
            grid-to-world transform is assumed to be the identity.
        resample_only : Boolean, optional
            If False (the default) the affine transform is applied normally.
            If True, then the affine transform is not applied, and the input
            image is just re-sampled on the domain grid of this transform.
        apply_inverse : Boolean, optional
            If False (the default) the image is transformed from the codomain
            of this transform to its domain using the (direct) affine
            transform. Otherwise, the image is transformed from the domain
            of this transform to its codomain using the (inverse) affine
            transform.
        Returns
        -------
        transformed : array, shape `sampling_grid_shape` or `self.domain_shape`
            the transformed image, sampled at the requested grid
        """
        # Verify valid interpolation requested
        if interpolation not in _interp_options:
            msg = f"Unknown interpolation method: {interpolation}"
            raise ValueError(msg)
        # Obtain sampling grid
        if sampling_grid_shape is None:
            if apply_inverse:
                sampling_grid_shape = self.codomain_shape
            else:
                sampling_grid_shape = self.domain_shape
        if sampling_grid_shape is None:
            msg = "Unknown sampling info. Provide a valid sampling_grid_shape"
            raise ValueError(msg)
        dim = len(sampling_grid_shape)
        shape = np.array(sampling_grid_shape, dtype=np.int32)
        # Verify valid image dimension
        img_dim = len(image.shape)
        if img_dim < 2 or img_dim > 3:
            raise ValueError(f"Undefined transform for dim: {img_dim}")
        # Obtain grid-to-world transform for sampling grid
        if sampling_grid2world is None:
            if apply_inverse:
                sampling_grid2world = self.codomain_grid2world
            else:
                sampling_grid2world = self.domain_grid2world
        if sampling_grid2world is None:
            sampling_grid2world = np.eye(dim + 1)
        # Obtain world-to-grid transform for input image
        if image_grid2world is None:
            if apply_inverse:
                image_grid2world = self.domain_grid2world
            else:
                image_grid2world = self.codomain_grid2world
            if image_grid2world is None:
                image_grid2world = np.eye(dim + 1)
        image_world2grid = npl.inv(image_grid2world)
        # Compute the transform from sampling grid to input image grid
        if apply_inverse:
            aff = self.affine_inv
        else:
            aff = self.affine
        if (aff is None) or resample_only:
            comp = image_world2grid.dot(sampling_grid2world)
        else:
            comp = image_world2grid.dot(aff.dot(sampling_grid2world))
        # Transform the input image
        if interpolation == "linear":
            image = image.astype(np.float64)
        transformed = _transform_method[(dim, interpolation)](image, shape, affine=comp)
        return transformed
[docs]
    @warning_for_keywords()
    def transform(
        self,
        image,
        *,
        interpolation="linear",
        image_grid2world=None,
        sampling_grid_shape=None,
        sampling_grid2world=None,
        resample_only=False,
    ):
        """Transform the input image from co-domain to domain space.
        By default, the transformed image is sampled at a grid defined by
        `self.domain_shape` and `self.domain_grid2world`. If such
        information was not provided then `sampling_grid_shape` is mandatory.
        Parameters
        ----------
        image :  2D or 3D array
            the image to be transformed
        interpolation : string, either 'linear' or 'nearest'
            the type of interpolation to be used, either 'linear'
            (for k-linear interpolation) or 'nearest' for nearest neighbor
        image_grid2world : array, shape (dim + 1, dim + 1), optional
            the grid-to-world transform associated with `image`.
            If None (the default), then the grid-to-world transform is assumed
            to be the identity.
        sampling_grid_shape : sequence, shape (dim,), optional
            the shape of the grid where the transformed image must be sampled.
            If None (the default), then `self.codomain_shape` is used instead
            (which must have been set at initialization, otherwise an exception
            will be raised).
        sampling_grid2world : array, shape (dim + 1, dim + 1), optional
            the grid-to-world transform associated with the sampling grid
            (specified by `sampling_grid_shape`, or by default
            `self.codomain_shape`). If None (the default), then the
            grid-to-world transform is assumed to be the identity.
        resample_only : Boolean, optional
            If False (the default) the affine transform is applied normally.
            If True, then the affine transform is not applied, and the input
            image is just re-sampled on the domain grid of this transform.
        Returns
        -------
        transformed : array
            the transformed image, sampled at the requested grid, with shape
            `sampling_grid_shape` or `self.codomain_shape`.
        """
        transformed = self._apply_transform(
            image,
            interpolation=interpolation,
            image_grid2world=image_grid2world,
            sampling_grid_shape=sampling_grid_shape,
            sampling_grid2world=sampling_grid2world,
            resample_only=resample_only,
            apply_inverse=False,
        )
        return np.array(transformed)
[docs]
    @warning_for_keywords()
    def transform_inverse(
        self,
        image,
        *,
        interpolation="linear",
        image_grid2world=None,
        sampling_grid_shape=None,
        sampling_grid2world=None,
        resample_only=False,
    ):
        """Transform the input image from domain to co-domain space.
        By default, the transformed image is sampled at a grid defined by
        `self.codomain_shape` and `self.codomain_grid2world`. If such
        information was not provided then `sampling_grid_shape` is mandatory.
        Parameters
        ----------
        image :  2D or 3D array
            the image to be transformed
        interpolation : string, either 'linear' or 'nearest'
            the type of interpolation to be used, either 'linear'
            (for k-linear interpolation) or 'nearest' for nearest neighbor
        image_grid2world : array, shape (dim + 1, dim + 1), optional
            the grid-to-world transform associated with `image`.
            If None (the default), then the grid-to-world transform is assumed
            to be the identity.
        sampling_grid_shape : sequence, shape (dim,), optional
            the shape of the grid where the transformed image must be sampled.
            If None (the default), then `self.codomain_shape` is used instead
            (which must have been set at initialization, otherwise an exception
            will be raised).
        sampling_grid2world : array, shape (dim + 1, dim + 1), optional
            the grid-to-world transform associated with the sampling grid
            (specified by `sampling_grid_shape`, or by default
            `self.codomain_shape`). If None (the default), then the
            grid-to-world transform is assumed to be the identity.
        resample_only : Boolean, optional
            If False (the default) the affine transform is applied normally.
            If True, then the affine transform is not applied, and the input
            image is just re-sampled on the domain grid of this transform.
        Returns
        -------
        transformed : array
            the transformed image, sampled at the requested grid, with shape
            `sampling_grid_shape` or `self.codomain_shape`.
        """
        transformed = self._apply_transform(
            image,
            interpolation=interpolation,
            image_grid2world=image_grid2world,
            sampling_grid_shape=sampling_grid_shape,
            sampling_grid2world=sampling_grid2world,
            resample_only=resample_only,
            apply_inverse=True,
        )
        return np.array(transformed)
[docs]
class MutualInformationMetric:
    @warning_for_keywords()
    def __init__(self, *, nbins=32, sampling_proportion=None):
        r"""Initialize an instance of the Mutual Information metric.
        This class implements the methods required by Optimizer to drive the
        registration process.
        Parameters
        ----------
        nbins : int, optional
            the number of bins to be used for computing the intensity
            histograms. The default is 32.
        sampling_proportion : None or float in interval (0, 1], optional
            There are two types of sampling: dense and sparse. Dense sampling
            uses all voxels for estimating the (joint and marginal) intensity
            histograms, while sparse sampling uses a subset of them. If
            `sampling_proportion` is None, then dense sampling is
            used. If `sampling_proportion` is a floating point value in (0,1]
            then sparse sampling is used, where `sampling_proportion`
            specifies the proportion of voxels to be used. The default is
            None.
        Notes
        -----
        Since we use linear interpolation, images are not, in general,
        differentiable at exact voxel coordinates, but they are differentiable
        between voxel coordinates. When using sparse sampling, selected voxels
        are slightly moved by adding a small random displacement within one
        voxel to prevent sampling points from being located exactly at voxel
        coordinates. When using dense sampling, this random displacement is
        not applied.
        """
        self.histogram = ParzenJointHistogram(nbins)
        self.sampling_proportion = sampling_proportion
        self.metric_val = None
        self.metric_grad = None
[docs]
    @warning_for_keywords()
    def setup(
        self,
        transform,
        static,
        moving,
        *,
        static_grid2world=None,
        moving_grid2world=None,
        starting_affine=None,
        static_mask=None,
        moving_mask=None,
    ):
        r"""Prepare the metric to compute intensity densities and gradients.
        The histograms will be setup to compute probability densities of
        intensities within the minimum and maximum values of `static` and
        `moving`
        Parameters
        ----------
        transform: instance of Transform
            the transformation with respect to whose parameters the gradient
            must be computed
        static : array, shape (S, R, C) or (R, C)
            static image
        moving : array, shape (S', R', C') or (R', C')
            moving image. The dimensions of the static (S, R, C) and moving
            (S', R', C') images do not need to be the same.
        static_grid2world : array (dim+1, dim+1), optional
            the grid-to-space transform of the static image. The default is
            None, implying the transform is the identity.
        moving_grid2world : array (dim+1, dim+1)
            the grid-to-space transform of the moving image. The default is
            None, implying the spacing along all axes is 1.
        starting_affine : array, shape (dim+1, dim+1), optional
            the pre-aligning matrix (an affine transform) that roughly aligns
            the moving image towards the static image. If None, no
            pre-alignment is performed. If a pre-alignment matrix is available,
            it is recommended to provide this matrix as `starting_affine`
            instead of manually transforming the moving image to reduce
            interpolation artifacts. The default is None, implying no
            pre-alignment is performed.
        static_mask : array, shape (S, R, C) or (R, C), optional
            static image mask that defines which pixels in the static image
            are used to calculate the mutual information.
        moving_mask : array, shape (S', R', C') or (R', C'), optional
            moving image mask that defines which pixels in the moving image
            are used to calculate the mutual information.
        """
        n = transform.get_number_of_parameters()
        self.metric_grad = np.zeros(n, dtype=np.float64)
        self.dim = len(static.shape)
        if moving_grid2world is None:
            moving_grid2world = np.eye(self.dim + 1)
        if static_grid2world is None:
            static_grid2world = np.eye(self.dim + 1)
        self.transform = transform
        self.static = np.array(static).astype(np.float64)
        self.moving = np.array(moving).astype(np.float64)
        self.static_grid2world = static_grid2world
        self.static_world2grid = npl.inv(static_grid2world)
        self.moving_grid2world = moving_grid2world
        self.moving_world2grid = npl.inv(moving_grid2world)
        self.static_direction, self.static_spacing = get_direction_and_spacings(
            static_grid2world, self.dim
        )
        self.moving_direction, self.moving_spacing = get_direction_and_spacings(
            moving_grid2world, self.dim
        )
        self.starting_affine = starting_affine
        P = np.eye(self.dim + 1)
        if self.starting_affine is not None:
            P = self.starting_affine
        self.affine_map = AffineMap(
            P,
            domain_grid_shape=static.shape,
            domain_grid2world=static_grid2world,
            codomain_grid_shape=moving.shape,
            codomain_grid2world=moving_grid2world,
        )
        # Masks can only be used with dense sampling
        if self.sampling_proportion in [None, 1.0]:
            if static_mask is not None:
                self.static_mask = static_mask.astype(np.int32)
            else:
                self.static_mask = None
            if moving_mask is not None:
                self.moving_mask = moving_mask.astype(np.int32)
            else:
                self.moving_mask = None
        else:
            if (static_mask is not None) or (moving_mask is not None):
                wm = "Masking is not implemented for sampling_proportion < 1, "
                wm = wm + "setting static_mask = None and moving_mask = None"
                warn(wm, UserWarning, stacklevel=2)
            self.static_mask, self.moving_mask = None, None
        if self.dim == 2:
            self.interp_method = interpolate_scalar_2d
        else:
            self.interp_method = interpolate_scalar_3d
        if self.sampling_proportion is None:
            self.samples = None
            self.ns = 0
        else:
            k = int(np.ceil(1.0 / self.sampling_proportion))
            shape = np.array(static.shape, dtype=np.int32)
            self.samples = sample_domain_regular(k, shape, static_grid2world)
            self.samples = np.array(self.samples)
            self.ns = self.samples.shape[0]
            # Add a column of ones (homogeneous coordinates)
            self.samples = np.hstack((self.samples, np.ones(self.ns)[:, None]))
            if self.starting_affine is None:
                self.samples_prealigned = self.samples
            else:
                self.samples_prealigned = self.starting_affine.dot(self.samples.T).T
            # Sample the static image
            static_p = self.static_world2grid.dot(self.samples.T).T
            static_p = static_p[..., : self.dim]
            self.static_vals, inside = self.interp_method(static, static_p)
            self.static_vals = np.array(self.static_vals, dtype=np.float64)
        self.histogram.setup(
            self.static, self.moving, smask=self.static_mask, mmask=self.moving_mask
        )
    def _update_histogram(self):
        r"""Update the histogram according to the current affine transform.
        The current affine transform is given by `self.affine_map`, which
        must be set before calling this method.
        Returns
        -------
        static_values: array, shape(n,) if sparse sampling is being used,
                       array, shape(S, R, C) or (R, C) if dense sampling
            the intensity values corresponding to the static image used to
            update the histogram. If sparse sampling is being used, then
            it is simply a sequence of scalars, obtained by sampling the static
            image at the `n` sampling points. If dense sampling is being used,
            then the intensities are given directly by the static image,
            whose shape is (S, R, C) in the 3D case or (R, C) in the 2D case.
        moving_values: array, shape(n,) if sparse sampling is being used,
                       array, shape(S, R, C) or (R, C) if dense sampling
            the intensity values corresponding to the moving image used to
            update the histogram. If sparse sampling is being used, then
            it is simply a sequence of scalars, obtained by sampling the moving
            image at the `n` sampling points (mapped to the moving space by the
            current affine transform). If dense sampling is being used,
            then the intensities are given by the moving imaged linearly
            transformed towards the static image by the current affine, which
            results in an image of the same shape as the static image.
        """
        static_mask_values, moving_mask_values = None, None
        if self.sampling_proportion is None:  # Dense case
            static_values = self.static
            moving_values = self.affine_map.transform(self.moving)
            if self.static_mask is not None:
                static_mask_values = self.static_mask
            if self.moving_mask is not None:
                moving_mask_values = self.affine_map.transform(
                    self.moving_mask, interpolation="nearest"
                ).astype(np.int32)
            self.histogram.update_pdfs_dense(
                static_values,
                moving_values,
                smask=self.static_mask,
                mmask=moving_mask_values,
            )
        else:  # Sparse case
            sp_to_moving = self.moving_world2grid.dot(self.affine_map.affine)
            pts = sp_to_moving.dot(self.samples.T).T  # Points on moving grid
            pts = pts[..., : self.dim]
            self.moving_vals, inside = self.interp_method(self.moving, pts)
            self.moving_vals = np.array(self.moving_vals)
            static_values = self.static_vals
            moving_values = self.moving_vals
            self.histogram.update_pdfs_sparse(static_values, moving_values)
        return static_values, moving_values, static_mask_values, moving_mask_values
    @warning_for_keywords()
    def _update_mutual_information(self, params, *, update_gradient=True):
        r"""Update marginal and joint distributions and the joint gradient.
        The distributions are updated according to the static and transformed
        images. The transformed image is precisely the moving image after
        transforming it by the transform defined by the `params` parameters.
        The gradient of the joint PDF is computed only if update_gradient
        is True.
        Parameters
        ----------
        params : array, shape (n,)
            the parameter vector of the transform currently used by the metric
            (the transform name is provided when self.setup is called), n is
            the number of parameters of the transform
        update_gradient : Boolean, optional
            if True, the gradient of the joint PDF will also be computed,
            otherwise, only the marginal and joint PDFs will be computed.
            The default is True.
        """
        # Get the matrix associated with the `params` parameter vector
        current_affine = self.transform.param_to_matrix(params)
        # Get the static-to-prealigned matrix (only needed for the MI gradient)
        static2prealigned = self.static_grid2world
        if self.starting_affine is not None:
            current_affine = current_affine.dot(self.starting_affine)
            static2prealigned = self.starting_affine.dot(static2prealigned)
        self.affine_map.set_affine(current_affine)
        # Update the histogram with the current joint intensities
        static_values, moving_values, static_mask_values, moving_mask_values = (
            self._update_histogram()
        )
        H = self.histogram  # Shortcut to `self.histogram`
        grad = None  # Buffer to write the MI gradient into (if needed)
        if update_gradient:
            grad = self.metric_grad
            # Compute the gradient of the joint PDF w.r.t. parameters
            if self.sampling_proportion is None:  # Dense case
                # Compute the gradient of moving img. at physical points
                # associated with the >>static image's grid<< cells
                # The image gradient must be eval. at current moved points
                grid_to_world = current_affine.dot(self.static_grid2world)
                mgrad, inside = vf.gradient(
                    self.moving,
                    self.moving_world2grid,
                    self.moving_spacing,
                    self.static.shape,
                    grid_to_world,
                )
                # The Jacobian must be evaluated at the pre-aligned points
                H.update_gradient_dense(
                    params,
                    self.transform,
                    static_values,
                    moving_values,
                    static2prealigned,
                    mgrad,
                    smask=static_mask_values,
                    mmask=moving_mask_values,
                )
            else:  # Sparse case
                # Compute the gradient of moving at the sampling points
                # which are already given in physical space coordinates
                pts = current_affine.dot(self.samples.T).T  # Moved points
                mgrad, inside = vf.sparse_gradient(
                    self.moving, self.moving_world2grid, self.moving_spacing, pts
                )
                # The Jacobian must be evaluated at the pre-aligned points
                pts = self.samples_prealigned[..., : self.dim]
                H.update_gradient_sparse(
                    params, self.transform, static_values, moving_values, pts, mgrad
                )
        # Call the cythonized MI computation with self.histogram fields
        self.metric_val = compute_parzen_mi(
            H.joint, H.joint_grad, H.smarginal, H.mmarginal, grad
        )
[docs]
    def distance(self, params):
        r"""Numeric value of the negative Mutual Information.
        We need to change the sign so we can use standard minimization
        algorithms.
        Parameters
        ----------
        params : array, shape (n,)
            the parameter vector of the transform currently used by the metric
            (the transform name is provided when self.setup is called), n is
            the number of parameters of the transform
        Returns
        -------
        neg_mi : float
            the negative mutual information of the input images after
            transforming the moving image by the currently set transform
            with `params` parameters
        """
        try:
            self._update_mutual_information(params, update_gradient=False)
        except (AffineInversionError, AffineInvalidValuesError):
            return np.inf
        return -1 * self.metric_val
[docs]
    def gradient(self, params):
        r"""Numeric value of the metric's gradient at the given parameters.
        Parameters
        ----------
        params : array, shape (n,)
            the parameter vector of the transform currently used by the metric
            (the transform name is provided when self.setup is called), n is
            the number of parameters of the transform
        Returns
        -------
        grad : array, shape (n,)
            the gradient of the negative Mutual Information
        """
        try:
            self._update_mutual_information(params, update_gradient=True)
        except (AffineInversionError, AffineInvalidValuesError):
            return 0 * self.metric_grad
        return -1 * self.metric_grad
[docs]
    def distance_and_gradient(self, params):
        r"""Numeric value of the metric and its gradient at given parameters.
        Parameters
        ----------
        params : array, shape (n,)
            the parameter vector of the transform currently used by the metric
            (the transform name is provided when self.setup is called), n is
            the number of parameters of the transform
        Returns
        -------
        neg_mi : float
            the negative mutual information of the input images after
            transforming the moving image by the currently set transform
            with `params` parameters
        neg_mi_grad : array, shape (n,)
            the gradient of the negative Mutual Information
        """
        try:
            self._update_mutual_information(params, update_gradient=True)
        except (AffineInversionError, AffineInvalidValuesError):
            return np.inf, 0 * self.metric_grad
        return -1 * self.metric_val, -1 * self.metric_grad
[docs]
class AffineRegistration:
    @warning_for_keywords()
    def __init__(
        self,
        *,
        metric=None,
        level_iters=None,
        sigmas=None,
        factors=None,
        method="L-BFGS-B",
        ss_sigma_factor=None,
        options=None,
        verbosity=VerbosityLevels.STATUS,
    ):
        """Initialize an instance of the AffineRegistration class.
        Parameters
        ----------
        metric : None or object, optional
            an instance of a metric. The default is None, implying
            the Mutual Information metric with default settings.
        level_iters : sequence, optional
            the number of iterations at each scale of the scale space.
            `level_iters[0]` corresponds to the coarsest scale,
            `level_iters[-1]` the finest, where n is the length of the
            sequence. By default, a 3-level scale space with iterations
            sequence equal to [10000, 1000, 100] will be used.
        sigmas : sequence of floats, optional
            custom smoothing parameter to build the scale space (one parameter
            for each scale). By default, the sequence of sigmas will be
            [3, 1, 0].
        factors : sequence of floats, optional
            custom scale factors to build the scale space (one factor for each
            scale). By default, the sequence of factors will be [4, 2, 1].
        method : string, optional
            optimization method to be used. If Scipy version < 0.12, then
            only L-BFGS-B is available. Otherwise, `method` can be any
            gradient-based method available in `dipy.core.Optimize`: CG, BFGS,
            Newton-CG, dogleg or trust-ncg.
            The default is 'L-BFGS-B'.
        ss_sigma_factor : float, optional
            If None, this parameter is not used and an isotropic scale
            space with the given `factors` and `sigmas` will be built.
            If not None, an anisotropic scale space will be used by
            automatically selecting the smoothing sigmas along each axis
            according to the voxel dimensions of the given image.
            The `ss_sigma_factor` is used to scale the automatically computed
            sigmas. For example, in the isotropic case, the sigma of the
            kernel will be $factor * (2 ^ i)$ where
            $i = 1, 2, ..., n_{scales} - 1$ is the scale (the finest resolution
            image $i=0$ is never smoothed). The default is None.
        options : dict, optional
            extra optimization options. The default is None, implying
            no extra options are passed to the optimizer.
        """
        self.metric = metric
        if self.metric is None:
            self.metric = MutualInformationMetric()
        if level_iters is None:
            level_iters = [10000, 1000, 100]
        self.level_iters = level_iters
        self.levels = len(level_iters)
        if self.levels == 0:
            raise ValueError("The iterations sequence cannot be empty")
        self.options = options
        self.method = method
        if ss_sigma_factor is not None:
            self.use_isotropic = False
            self.ss_sigma_factor = ss_sigma_factor
        else:
            self.use_isotropic = True
            if factors is None:
                factors = [4, 2, 1]
            if sigmas is None:
                sigmas = [3, 1, 0]
            self.factors = factors
            self.sigmas = sigmas
        self.verbosity = verbosity
    # Separately add a string that tells about the verbosity kwarg. This needs
    # to be separate, because it is set as a module-wide option in __init__:
    docstring_addendum = (
        """verbosity : int (one of {0, 1, 2, 3}), optional
            Set the verbosity level of the algorithm:
            - 0 : do not print anything
            - 1 : print information about the current status of the algorithm
            - 2 : print high level information of the components involved in
              the registration that can be used to detect a failing component.
            - 3 : print as much information as possible to isolate the cause of
              a bug.
            Default: % s
    """
        % VerbosityLevels.STATUS
    )
    __init__.__doc__ = __init__.__doc__ + docstring_addendum
    def _init_optimizer(
        self,
        static,
        moving,
        transform,
        params0,
        static_grid2world,
        moving_grid2world,
        starting_affine,
        static_mask,
        moving_mask,
    ):
        r"""Initialize the registration optimizer.
        Initializes the optimizer by computing the scale space of the input
        images
        Parameters
        ----------
        static : array, shape (S, R, C) or (R, C)
            the image to be used as reference during optimization.
        moving : array, shape (S', R', C') or (R', C')
            the image to be used as "moving" during optimization. The
            dimensions of the static (S, R, C) and moving (S', R', C') images
            do not need to be the same.
        transform : instance of Transform
            the transformation with respect to whose parameters the gradient
            must be computed
        params0 : array, shape (n,)
            parameters from which to start the optimization. If None, the
            optimization will start at the identity transform. n is the
            number of parameters of the specified transformation.
        static_grid2world : array, shape (dim+1, dim+1)
            the voxel-to-space transformation associated with the static image
        moving_grid2world : array, shape (dim+1, dim+1)
            the voxel-to-space transformation associated with the moving image
        starting_affine : string, or matrix, or None
            If string:
                'mass': align centers of gravity
                'voxel-origin': align physical coordinates of voxel (0,0,0)
                'centers': align physical coordinates of central voxels
            If matrix:
                array, shape (dim+1, dim+1)
            If None:
                Start from identity
        static_mask : array, shape (S, R, C) or (R, C), optional
            static image mask that defines which pixels in the static image
            are used to calculate the mutual information.
        moving_mask : array, shape (S', R', C') or (R', C'), optional
            moving image mask that defines which pixels in the moving image
            are used to calculate the mutual information.
        """
        self.dim = len(static.shape)
        self.transform = transform
        n = transform.get_number_of_parameters()
        self.nparams = n
        # ensure that masks are not all zeros
        if np.all(static_mask == 0):
            warn(
                "static_mask is all zeros, setting to None (which means \
                  the entire volume will be used)",
                UserWarning,
                stacklevel=2,
            )
            static_mask = None
        if np.all(moving_mask == 0):
            warn("moving_mask is all zeros, setting to None", UserWarning, stacklevel=2)
            moving_mask = None
        # save masks for use elsewhere
        self.static_mask, self.moving_mask = static_mask, moving_mask
        # multiply images by masks for transform_centers_of_mass
        static_masked, moving_masked = static, moving
        if static_mask is not None:
            static_masked = static * static_mask
        if moving_mask is not None:
            moving_masked = moving * moving_mask
        if params0 is None:
            params0 = self.transform.get_identity_parameters()
        self.params0 = params0
        if starting_affine is None:
            self.starting_affine = np.eye(self.dim + 1)
        elif isinstance(starting_affine, str):
            if starting_affine == "mass":
                affine_map = transform_centers_of_mass(
                    static_masked, static_grid2world, moving_masked, moving_grid2world
                )
                self.starting_affine = affine_map.affine
                print("starting_affine in imaffine:", self.starting_affine)
            elif starting_affine == "voxel-origin":
                affine_map = transform_origins(
                    static, static_grid2world, moving, moving_grid2world
                )
                self.starting_affine = affine_map.affine
            elif starting_affine == "centers":
                affine_map = transform_geometric_centers(
                    static, static_grid2world, moving, moving_grid2world
                )
                self.starting_affine = affine_map.affine
            else:
                raise ValueError("Invalid starting_affine strategy")
        elif isinstance(starting_affine, np.ndarray) and starting_affine.shape >= (
            self.dim,
            self.dim + 1,
        ):
            self.starting_affine = starting_affine
        else:
            raise ValueError("Invalid starting_affine matrix")
        # Extract information from affine matrices to create the scale space
        static_direction, static_spacing = get_direction_and_spacings(
            static_grid2world, self.dim
        )
        moving_direction, moving_spacing = get_direction_and_spacings(
            moving_grid2world, self.dim
        )
        # Scale the images by min and max values (where mask == 1)
        if static_mask is not None:
            smin = np.min(static[static_mask == 1])
            smax = np.max(static[static_mask == 1])
        else:
            smin, smax = np.min(static), np.max(static)
        static = (static.astype(np.float64) - smin) / (smax - smin)
        if moving_mask is not None:
            mmin = np.min(moving[moving_mask == 1])
            mmax = np.max(moving[moving_mask == 1])
        else:
            mmin, mmax = np.min(moving), np.max(moving)
        moving = (moving.astype(np.float64) - mmin) / (mmax - mmin)
        # Build the scale space of the input images
        if self.use_isotropic:
            self.moving_ss = IsotropicScaleSpace(
                moving,
                self.factors,
                self.sigmas,
                image_grid2world=moving_grid2world,
                input_spacing=moving_spacing,
                mask0=False,
            )
            self.static_ss = IsotropicScaleSpace(
                static,
                self.factors,
                self.sigmas,
                image_grid2world=static_grid2world,
                input_spacing=static_spacing,
                mask0=False,
            )
        else:
            self.moving_ss = ScaleSpace(
                moving,
                self.levels,
                image_grid2world=moving_grid2world,
                input_spacing=moving_spacing,
                sigma_factor=self.ss_sigma_factor,
                mask0=False,
            )
            self.static_ss = ScaleSpace(
                static,
                self.levels,
                image_grid2world=static_grid2world,
                input_spacing=static_spacing,
                sigma_factor=self.ss_sigma_factor,
                mask0=False,
            )
[docs]
    @warning_for_keywords()
    def optimize(
        self,
        static,
        moving,
        transform,
        params0,
        *,
        static_grid2world=None,
        moving_grid2world=None,
        starting_affine=None,
        ret_metric=False,
        static_mask=None,
        moving_mask=None,
    ):
        r"""Start the optimization process.
        Parameters
        ----------
        static : 2D or 3D array
            the image to be used as reference during optimization.
        moving : 2D or 3D array
            the image to be used as "moving" during optimization. It is
            necessary to pre-align the moving image to ensure its domain
            lies inside the domain of the deformation fields. This is assumed
            to be accomplished by "pre-aligning" the moving image towards the
            static using an affine transformation given by the
            'starting_affine' matrix
        transform : instance of Transform
            the transformation with respect to whose parameters the gradient
            must be computed
        params0 : array, shape (n,)
            parameters from which to start the optimization. If None, the
            optimization will start at the identity transform. n is the
            number of parameters of the specified transformation.
        static_grid2world : array, shape (dim+1, dim+1), optional
            the voxel-to-space transformation associated with the static
            image. The default is None, implying the transform is the
            identity.
        moving_grid2world : array, shape (dim+1, dim+1), optional
            the voxel-to-space transformation associated with the moving
            image. The default is None, implying the transform is the
            identity.
        starting_affine : string, or matrix, or None, optional
            If string:
                'mass': align centers of gravity
                'voxel-origin': align physical coordinates of voxel (0,0,0)
                'centers': align physical coordinates of central voxels
            If matrix:
                array, shape (dim+1, dim+1).
            If None:
                Start from identity.
        ret_metric : boolean, optional
            if True, it returns the parameters for measuring the
            similarity between the images (default 'False').
            The metric containing optimal parameters and
            the distance between the images.
        static_mask : array, shape (S, R, C) or (R, C), optional
            static image mask that defines which pixels in the static image
            are used to calculate the mutual information.
        moving_mask : array, shape (S', R', C') or (R', C'), optional
            moving image mask that defines which pixels in the moving image
            are used to calculate the mutual information.
        Returns
        -------
        affine_map : instance of AffineMap
            the affine resulting affine transformation
        xopt : optimal parameters
            the optimal parameters (translation, rotation shear etc.)
        fopt : Similarity metric
            the value of the function at the optimal parameters.
        """
        self._init_optimizer(
            static,
            moving,
            transform,
            params0,
            static_grid2world,
            moving_grid2world,
            starting_affine,
            static_mask,
            moving_mask,
        )
        del starting_affine  # Now we must refer to self.starting_affine
        del static_mask  # Now we must refer to self.static_mask
        del moving_mask  # Now we must refer to self.moving_mask
        # Multi-resolution iterations
        original_static_shape = self.static_ss.get_image(0).shape
        original_static_grid2world = self.static_ss.get_affine(0)
        original_moving_shape = self.moving_ss.get_image(0).shape
        original_moving_grid2world = self.moving_ss.get_affine(0)
        affine_map = AffineMap(
            None,
            domain_grid_shape=original_static_shape,
            domain_grid2world=original_static_grid2world,
            codomain_grid_shape=original_moving_shape,
            codomain_grid2world=original_moving_grid2world,
        )
        for level in range(self.levels - 1, -1, -1):
            self.current_level = level
            max_iter = self.level_iters[-1 - level]
            if self.verbosity >= VerbosityLevels.STATUS:
                print(f"Optimizing level {level} [max iter: {max_iter}]")
            # Resample the smooth static image to the shape of this level
            smooth_static = self.static_ss.get_image(level)
            current_static_shape = self.static_ss.get_domain_shape(level)
            current_static_grid2world = self.static_ss.get_affine(level)
            current_affine_map = AffineMap(
                None,
                domain_grid_shape=current_static_shape,
                domain_grid2world=current_static_grid2world,
                codomain_grid_shape=original_static_shape,
                codomain_grid2world=original_static_grid2world,
            )
            current_static = current_affine_map.transform(smooth_static)
            current_static_mask = None
            if self.static_mask is not None:
                current_static_mask = current_affine_map.transform(
                    self.static_mask, interpolation="nearest"
                ).astype(np.int32)
            # The moving image is full resolution
            current_moving_grid2world = original_moving_grid2world
            current_moving = self.moving_ss.get_image(level)
            # Prepare the metric for iterations at this resolution
            self.metric.setup(
                transform,
                current_static,
                current_moving,
                static_grid2world=current_static_grid2world,
                moving_grid2world=current_moving_grid2world,
                starting_affine=self.starting_affine,
                static_mask=current_static_mask,
                moving_mask=self.moving_mask,
            )
            # Optimize this level
            if self.options is None:
                self.options = {"gtol": 1e-4, "disp": False}
            if self.method == "L-BFGS-B":
                self.options["maxfun"] = max_iter
            else:
                self.options["maxiter"] = max_iter
            opt = Optimizer(
                self.metric.distance_and_gradient,
                self.params0,
                method=self.method,
                jac=True,
                options=self.options,
            )
            params = opt.xopt
            # Update starting_affine matrix with optimal parameters
            T = self.transform.param_to_matrix(params)
            self.starting_affine = T.dot(self.starting_affine)
            # Start next iteration at identity
            self.params0 = self.transform.get_identity_parameters()
        affine_map.set_affine(self.starting_affine)
        if ret_metric:
            return affine_map, opt.xopt, opt.fopt
        return affine_map
[docs]
def transform_centers_of_mass(static, static_grid2world, moving, moving_grid2world):
    r"""Transformation to align the center of mass of the input images.
    Parameters
    ----------
    static : array, shape (S, R, C)
        static image
    static_grid2world : array, shape (dim+1, dim+1)
        the voxel-to-space transformation of the static image
    moving : array, shape (S, R, C)
        moving image
    moving_grid2world : array, shape (dim+1, dim+1)
        the voxel-to-space transformation of the moving image
    Returns
    -------
    affine_map : instance of AffineMap
        the affine transformation (translation only, in this case) aligning
        the center of mass of the moving image towards the one of the static
        image
    """
    dim = len(static.shape)
    if static_grid2world is None:
        static_grid2world = np.eye(dim + 1)
    if moving_grid2world is None:
        moving_grid2world = np.eye(dim + 1)
    c_static = ndimage.center_of_mass(np.array(static))
    c_static = static_grid2world.dot(c_static + (1,))
    c_moving = ndimage.center_of_mass(np.array(moving))
    c_moving = moving_grid2world.dot(c_moving + (1,))
    transform = np.eye(dim + 1)
    transform[:dim, dim] = (c_moving - c_static)[:dim]
    affine_map = AffineMap(
        transform,
        domain_grid_shape=static.shape,
        domain_grid2world=static_grid2world,
        codomain_grid_shape=moving.shape,
        codomain_grid2world=moving_grid2world,
    )
    return affine_map
[docs]
def transform_geometric_centers(static, static_grid2world, moving, moving_grid2world):
    r"""Transformation to align the geometric center of the input images.
    With "geometric center" of a volume we mean the physical coordinates of
    its central voxel
    Parameters
    ----------
    static : array, shape (S, R, C)
        static image
    static_grid2world : array, shape (dim+1, dim+1)
        the voxel-to-space transformation of the static image
    moving : array, shape (S, R, C)
        moving image
    moving_grid2world : array, shape (dim+1, dim+1)
        the voxel-to-space transformation of the moving image
    Returns
    -------
    affine_map : instance of AffineMap
        the affine transformation (translation only, in this case) aligning
        the geometric center of the moving image towards the one of the static
        image
    """
    dim = len(static.shape)
    if static_grid2world is None:
        static_grid2world = np.eye(dim + 1)
    if moving_grid2world is None:
        moving_grid2world = np.eye(dim + 1)
    c_static = tuple((np.array(static.shape, dtype=np.float64)) * 0.5)
    c_static = static_grid2world.dot(c_static + (1,))
    c_moving = tuple((np.array(moving.shape, dtype=np.float64)) * 0.5)
    c_moving = moving_grid2world.dot(c_moving + (1,))
    transform = np.eye(dim + 1)
    transform[:dim, dim] = (c_moving - c_static)[:dim]
    affine_map = AffineMap(
        transform,
        domain_grid_shape=static.shape,
        domain_grid2world=static_grid2world,
        codomain_grid_shape=moving.shape,
        codomain_grid2world=moving_grid2world,
    )
    return affine_map
[docs]
def transform_origins(static, static_grid2world, moving, moving_grid2world):
    r"""Transformation to align the origins of the input images.
    With "origin" of a volume we mean the physical coordinates of
    voxel (0,0,0)
    Parameters
    ----------
    static : array, shape (S, R, C)
        static image
    static_grid2world : array, shape (dim+1, dim+1)
        the voxel-to-space transformation of the static image
    moving : array, shape (S, R, C)
        moving image
    moving_grid2world : array, shape (dim+1, dim+1)
        the voxel-to-space transformation of the moving image
    Returns
    -------
    affine_map : instance of AffineMap
        the affine transformation (translation only, in this case) aligning
        the origin of the moving image towards the one of the static
        image
    """
    dim = len(static.shape)
    if static_grid2world is None:
        static_grid2world = np.eye(dim + 1)
    if moving_grid2world is None:
        moving_grid2world = np.eye(dim + 1)
    c_static = static_grid2world[:dim, dim]
    c_moving = moving_grid2world[:dim, dim]
    transform = np.eye(dim + 1)
    transform[:dim, dim] = (c_moving - c_static)[:dim]
    affine_map = AffineMap(
        transform,
        domain_grid_shape=static.shape,
        domain_grid2world=static_grid2world,
        codomain_grid_shape=moving.shape,
        codomain_grid2world=moving_grid2world,
    )
    return affine_map