"""Classes and functions for fitting tensors without free water
contamination"""
from functools import partial
import warnings
import numpy as np
import scipy.optimize as opt
from dipy.core.gradients import check_multi_b
from dipy.core.ndindex import ndindex
from dipy.reconst.base import ReconstModel
from dipy.reconst.dki import _positive_evals
from dipy.reconst.dti import (
    TensorFit,
    _decompose_tensor_nan,
    decompose_tensor,
    design_matrix,
    from_lower_triangular,
    lower_triangular,
)
from dipy.reconst.multi_voxel import multi_voxel_fit
from dipy.reconst.vec_val_sum import vec_val_vect
from dipy.testing.decorators import warning_for_keywords
[docs]
@warning_for_keywords()
def fwdti_prediction(params, gtab, *, S0=1, Diso=3.0e-3):
    r"""Signal prediction given the free water DTI model parameters.
    Parameters
    ----------
    params : (..., 13) ndarray
        Model parameters. The last dimension should have the 12 tensor
        parameters (3 eigenvalues, followed by the 3 corresponding
        eigenvectors) and the volume fraction of the free water compartment.
    gtab : a GradientTable class instance
        The gradient table for this prediction
    S0 : float or ndarray
        The non diffusion-weighted signal in every voxel, or across all
        voxels. Default: 1
    Diso : float, optional
        Value of the free water isotropic diffusion. Default is set to 3e-3
        $mm^{2}.s^{-1}$. Please adjust this value if you are assuming different
        units of diffusion.
    Returns
    -------
    S : (..., N) ndarray
        Simulated signal based on the free water DTI model
    Notes
    -----
    The predicted signal is given by:
    $S(\theta, b) = S_0 * [(1-f) * e^{-b ADC} + f * e^{-b D_{iso}]$, where
    $ADC = \theta Q \theta^T$, $\theta$ is a unit vector pointing at any
    direction on the sphere for which a signal is to be predicted, $b$ is the b
    value provided in the GradientTable input for that direction, $Q$ is the
    quadratic form of the tensor determined by the input parameters, $f$ is the
    free water diffusion compartment, $D_{iso}$ is the free water diffusivity
    which is equal to $3 * 10^{-3} mm^{2}s^{-1} :footcite:p:`NetoHenriques2017`.
    References
    ----------
    .. footbibliography::
    """
    evals = params[..., :3]
    evecs = params[..., 3:-1].reshape(params.shape[:-1] + (3, 3))
    f = params[..., 12]
    qform = vec_val_vect(evecs, evals)
    lower_dt = lower_triangular(qform, b0=S0)
    lower_diso = lower_dt.copy()
    lower_diso[..., 0] = lower_diso[..., 2] = lower_diso[..., 5] = Diso
    lower_diso[..., 1] = lower_diso[..., 3] = lower_diso[..., 4] = 0
    D = design_matrix(gtab)
    pred_sig = np.zeros(f.shape + (gtab.bvals.shape[0],))
    mask = _positive_evals(evals[..., 0], evals[..., 1], evals[..., 2])
    index = ndindex(f.shape)
    for v in index:
        if mask[v]:
            pred_sig[v] = (1 - f[v]) * np.exp(np.dot(lower_dt[v], D.T)) + f[v] * np.exp(
                np.dot(lower_diso[v], D.T)
            )
    return pred_sig 
[docs]
class FreeWaterTensorModel(ReconstModel):
    """Class for the Free Water Elimination Diffusion Tensor Model"""
    def __init__(self, gtab, *args, fit_method="NLS", **kwargs):
        """Free Water Diffusion Tensor Model.
        See :footcite:p:`NetoHenriques2017` for further details about the model.
        Parameters
        ----------
        gtab : GradientTable class instance
            Gradient table.
        fit_method : str or callable
            str can be one of the following:
            - 'WLS' for weighted linear least square fit according to
              :footcite:p:`NetoHenriques2017` :func:`fwdti.wls_iter`
            - 'NLS' for non-linear least square fit according to
              :footcite:p:`NetoHenriques2017` :func:`fwdti.nls_iter`
            callable has to have the signature:
              ``fit_method(design_matrix, data, *args, **kwargs)``
        args, kwargs : arguments and key-word arguments passed to the
           fit_method. See fwdti.wls_iter, fwdti.nls_iter for
           details
        References
        ----------
        .. footbibliography::
        """
        ReconstModel.__init__(self, gtab)
        if not callable(fit_method):
            try:
                fit_method = common_fit_methods[fit_method]
            except KeyError as e:
                e_s = '"' + str(fit_method) + '" is not a known fit '
                e_s += "method, the fit method should either be a "
                e_s += "function or one of the common fit methods"
                raise ValueError(e_s) from e
        self.fit_method = fit_method
        self.design_matrix = design_matrix(self.gtab)
        self.args = args
        self.kwargs = kwargs
        # Check if at least three b-values are given
        enough_b = check_multi_b(self.gtab, 3, non_zero=False)
        if not enough_b:
            mes = "fwDTI requires at least 3 b-values (which can include b=0)"
            raise ValueError(mes)
    @multi_voxel_fit
    @warning_for_keywords()
    def fit(self, data, *, mask=None, **kwargs):
        """Fit method of the free water elimination DTI model class
        Parameters
        ----------
        data : array
            The measured signal from one voxel.
        mask : array
            A boolean array used to mark the coordinates in the data that
            should be analyzed that has the shape data.shape[:-1]
        """
        S0 = np.mean(data[self.gtab.b0s_mask])
        fwdti_params = self.fit_method(
            self.design_matrix, data, S0, *self.args, **self.kwargs
        )
        return FreeWaterTensorFit(self, fwdti_params)
[docs]
    @warning_for_keywords()
    def predict(self, fwdti_params, *, S0=1):
        """Predict a signal for this TensorModel class instance given
        parameters.
        Parameters
        ----------
        fwdti_params : (..., 13) ndarray
            The last dimension should have 13 parameters: the 12 tensor
            parameters (3 eigenvalues, followed by the 3 corresponding
            eigenvectors) and the free water volume fraction.
        S0 : float or ndarray
            The non diffusion-weighted signal in every voxel, or across all
            voxels. Default: 1
        Returns
        -------
        S : (..., N) ndarray
            Simulated signal based on the free water DTI model
        """
        return fwdti_prediction(fwdti_params, self.gtab, S0=S0) 
 
[docs]
class FreeWaterTensorFit(TensorFit):
    """Class for fitting the Free Water Tensor Model"""
    def __init__(self, model, model_params):
        """Initialize a FreeWaterTensorFit class instance.
        Since the free water tensor model is an extension of DTI, class
        instance is defined as subclass of the TensorFit from dti.py
        See :footcite:p:`NetoHenriques2017` for further details about the
        method.
        Parameters
        ----------
        model : FreeWaterTensorModel Class instance
            Class instance containing the free water tensor model for the fit
        model_params : ndarray (x, y, z, 13) or (n, 13)
            All parameters estimated from the free water tensor model.
            Parameters are ordered as follows:
                1) Three diffusion tensor's eigenvalues
                2) Three lines of the eigenvector matrix each containing the
                   first, second and third coordinates of the eigenvector
                3) The volume fraction of the free water compartment
        References
        ----------
        .. footbibliography::
        """
        TensorFit.__init__(self, model, model_params)
    @property
    def f(self):
        """Returns the free water diffusion volume fraction f"""
        return self.model_params[..., 12]
[docs]
    @warning_for_keywords()
    def predict(self, gtab, *, S0=1):
        r"""Given a free water tensor model fit, predict the signal on the
        vertices of a gradient table
        Parameters
        ----------
        gtab : a GradientTable class instance
            The gradient table for this prediction
        S0 : float array
           The mean non-diffusion weighted signal in each voxel. Default: 1 in
           all voxels.
        Returns
        -------
        S : (..., N) ndarray
            Simulated signal based on the free water DTI model
        """
        return fwdti_prediction(self.model_params, gtab, S0=S0) 
 
[docs]
@warning_for_keywords()
def wls_iter(
    design_matrix, sig, S0, *, Diso=3e-3, mdreg=2.7e-3, min_signal=1.0e-6, piterations=3
):
    """Applies weighted linear least squares fit of the water free elimination
    model to single voxel signals.
    Parameters
    ----------
    design_matrix : array (g, 7)
        Design matrix holding the covariants used to solve for the regression
        coefficients.
    sig : array (g, )
        Diffusion-weighted signal for a single voxel data.
    S0 : float
        Non diffusion weighted signal (i.e. signal for b-value=0).
    Diso : float, optional
        Value of the free water isotropic diffusion. Default is set to 3e-3
        $mm^{2}.s^{-1}$. Please adjust this value if you are assuming different
        units of diffusion.
    mdreg : float, optimal
        DTI's mean diffusivity regularization threshold. If standard DTI
        diffusion tensor's mean diffusivity is almost near the free water
        diffusion value, the diffusion signal is assumed to be only free water
        diffusion (i.e. volume fraction will be set to 1 and tissue's diffusion
        parameters are set to zero). Default md_reg is 2.7e-3 $mm^{2}.s^{-1}$
        (corresponding to 90% of the free water diffusion value).
    min_signal : float
        The minimum signal value. Needs to be a strictly positive
        number. Default: minimal signal in the data provided to `fit`.
    piterations : inter, optional
        Number of iterations used to refine the precision of f. Default is set
        to 3 corresponding to a precision of 0.01.
    Returns
    -------
    fw_params : ndarray
        All parameters estimated from the free water tensor model. Parameters
        are ordered as follows:
            1) Three diffusion tensor's eigenvalues
            2) Three lines of the eigenvector matrix each containing the
               first, second and third coordinates of the eigenvector
            3) The volume fraction of the free water compartment
    """
    W = design_matrix
    # DTI ordinary linear least square solution
    log_s = np.log(np.maximum(sig, min_signal))
    # Define weights
    S2 = np.diag(sig**2)
    # DTI weighted linear least square solution
    WTS2 = np.dot(W.T, S2)
    inv_WT_S2_W = np.linalg.pinv(np.dot(WTS2, W))
    invWTS2W_WTS2 = np.dot(inv_WT_S2_W, WTS2)
    params = np.dot(invWTS2W_WTS2, log_s)
    md = (params[0] + params[2] + params[5]) / 3
    # Process voxel if it has significant signal from tissue
    if md < mdreg and np.mean(sig) > min_signal and S0 > min_signal:
        # General free-water signal contribution
        fwsig = np.exp(np.dot(design_matrix, np.array([Diso, 0, Diso, 0, 0, Diso, 0])))
        df = 1  # initialize precision
        flow = 0  # lower f evaluated
        fhig = 1  # higher f evaluated
        ns = 9  # initial number of samples per iteration
        for _ in range(piterations):
            df = df * 0.1
            fs = np.linspace(flow + df, fhig - df, num=ns)  # sampling f
            SFW = np.array(
                [
                    fwsig,
                ]
                * ns
            )  # repeat contributions for all values
            FS, SI = np.meshgrid(fs, sig)
            SA = SI - FS * S0 * SFW.T
            # SA < 0 means that the signal components from the free water
            # component is larger than the total fiber. These cases are present
            # for inappropriate large volume fractions (given the current S0
            # value estimated). To overcome this issue negative SA are replaced
            # by data's min positive signal.
            SA[SA <= 0] = min_signal
            y = np.log(SA / (1 - FS))
            all_new_params = np.dot(invWTS2W_WTS2, y)
            # Select params for lower F2
            SIpred = (1 - FS) * np.exp(np.dot(W, all_new_params)) + FS * S0 * SFW.T
            F2 = np.sum(np.square(SI - SIpred), axis=0)
            Mind = np.argmin(F2)
            params = all_new_params[:, Mind]
            f = fs[Mind]  # Updated f
            flow = f - df  # refining precision
            fhig = f + df
            ns = 19
        evals, evecs = decompose_tensor(from_lower_triangular(params))
        fw_params = np.concatenate(
            (evals, evecs[0], evecs[1], evecs[2], np.array([f])), axis=0
        )
    else:
        fw_params = np.zeros(13)
        if md > mdreg:
            fw_params[12] = 1.0
    return fw_params 
[docs]
@warning_for_keywords()
def wls_fit_tensor(
    gtab, data, *, Diso=3e-3, mask=None, min_signal=1.0e-6, piterations=3, mdreg=2.7e-3
):
    r"""Computes weighted least squares (WLS) fit to calculate self-diffusion
    tensor using a linear regression model.
    See :footcite:p:`NetoHenriques2017` for further details about the method.
    Parameters
    ----------
    gtab : a GradientTable class instance
        The gradient table containing diffusion acquisition parameters.
    data : ndarray ([X, Y, Z, ...], g)
        Data or response variables holding the data. Note that the last
        dimension should contain the data. It makes no copies of data.
    Diso : float, optional
        Value of the free water isotropic diffusion. Default is set to 3e-3
        $mm^{2}.s^{-1}$. Please adjust this value if you are assuming different
        units of diffusion.
    mask : array, optional
        A boolean array used to mark the coordinates in the data that should
        be analyzed that has the shape data.shape[:-1]
    min_signal : float
        The minimum signal value. Needs to be a strictly positive
        number.
    piterations : inter, optional
        Number of iterations used to refine the precision of f. Default is set
        to 3 corresponding to a precision of 0.01.
    mdreg : float, optimal
        DTI's mean diffusivity regularization threshold. If standard DTI
        diffusion tensor's mean diffusivity is almost near the free water
        diffusion value, the diffusion signal is assumed to be only free water
        diffusion (i.e. volume fraction will be set to 1 and tissue's diffusion
        parameters are set to zero). Default md_reg is 2.7e-3 $mm^{2}.s^{-1}$
        (corresponding to 90% of the free water diffusion value).
    Returns
    -------
    fw_params : ndarray (x, y, z, 13)
        Matrix containing in the last dimension the free water model parameters
        in the following order:
            1) Three diffusion tensor's eigenvalues
            2) Three lines of the eigenvector matrix each containing the
               first, second and third coordinates of the eigenvector
            3) The volume fraction of the free water compartment.
    References
    ----------
    .. footbibliography::
    """
    fw_params = np.zeros(data.shape[:-1] + (13,))
    W = design_matrix(gtab)
    # Prepare mask
    if mask is None:
        mask = np.ones(data.shape[:-1], dtype=bool)
    else:
        if mask.shape != data.shape[:-1]:
            raise ValueError("Mask is not the same shape as data.")
        mask = np.asarray(mask, dtype=bool)
    # Prepare S0
    S0 = np.mean(data[:, :, :, gtab.b0s_mask], axis=-1)
    index = ndindex(mask.shape)
    for v in index:
        if mask[v]:
            params = wls_iter(
                W,
                data[v],
                S0[v],
                min_signal=min_signal,
                Diso=Diso,
                piterations=piterations,
                mdreg=mdreg,
            )
            fw_params[v] = params
    return fw_params 
@warning_for_keywords()
def _nls_err_func(
    tensor_elements,
    design_matrix,
    data,
    *,
    Diso=3e-3,
    weighting=None,
    sigma=None,
    cholesky=False,
    f_transform=False,
):
    """Error function for the non-linear least-squares fit of the tensor water
    elimination model.
    Parameters
    ----------
    tensor_elements : array (8, )
        The six independent elements of the diffusion tensor followed by
        -log(S0) and the volume fraction f of the water elimination
        compartment. Note that if cholesky is set to true, tensor elements are
        assumed to be written as Cholesky's decomposition elements. If
        f_transform is true, volume fraction f has to be converted to
        ft = arcsin(2*f - 1) + pi/2
    design_matrix : array
        The design matrix
    data : array
        The voxel signal in all gradient directions
    Diso : float, optional
        Value of the free water isotropic diffusion. Default is set to 3e-3
        $mm^{2}.s^{-1}$. Please adjust this value if you are assuming different
        units of diffusion.
    weighting : str, optional
         Whether to use the Geman-McClure weighting criterion (see
        :footcite:p:`NetoHenriques2017` for details)
    sigma : float or float array, optional
        If 'sigma' weighting is used, we will weight the error function
        according to the background noise estimated either in aggregate over
        all directions (when a float is provided), or to an estimate of the
        noise in each diffusion-weighting direction (if an array is
        provided). If 'gmm', the Geman-Mclure M-estimator is used for
        weighting.
    cholesky : bool, optional
        If true, the diffusion tensor elements were decomposed using Cholesky
        decomposition. See fwdti.nls_fit_tensor
    f_transform : bool, optional
        If true, the water volume fraction was converted to
        ft = arcsin(2*f - 1) + pi/2, insuring f estimates between 0 and 1.
        See fwdti.nls_fit_tensor
    References
    ----------
    .. footbibliography::
    """
    tensor = np.copy(tensor_elements)
    if cholesky:
        tensor[:6] = cholesky_to_lower_triangular(tensor[:6])
    if f_transform:
        f = 0.5 * (1 + np.sin(tensor[7] - np.pi / 2))
    else:
        f = tensor[7]
    # This is the predicted signal given the params:
    y = (1 - f) * np.exp(np.dot(design_matrix, tensor[:7])) + f * np.exp(
        np.dot(design_matrix, np.array([Diso, 0, Diso, 0, 0, Diso, tensor[6]]))
    )
    # Compute the residuals
    residuals = data - y
    # If we don't want to weight the residuals, we are basically done:
    if weighting is None:
        # And we return the SSE:
        return residuals
    se = residuals**2
    # If the user provided a sigma (e.g 1.5267 * std(background_noise), as
    # suggested by Chang et al.) we will use it:
    if weighting == "sigma":
        if sigma is None:
            e_s = "Must provide sigma value as input to use this weighting"
            e_s += " method"
            raise ValueError(e_s)
        w = 1 / (sigma**2)
    elif weighting == "gmm":
        # We use the Geman-McClure M-estimator to compute the weights on the
        # residuals:
        C = 1.4826 * np.median(np.abs(residuals - np.median(residuals)))
        with warnings.catch_warnings():
            warnings.simplefilter("ignore")
            w = 1 / (se + C**2)
            # The weights are normalized to the mean weight (see p. 1089):
            w = w / np.mean(w)
    # Return the weighted residuals:
    with warnings.catch_warnings():
        warnings.simplefilter("ignore")
        return np.sqrt(w * se)
@warning_for_keywords()
def _nls_jacobian_func(
    tensor_elements,
    design_matrix,
    data,
    *,
    Diso=3e-3,
    weighting=None,
    sigma=None,
    cholesky=False,
    f_transform=False,
):
    """The Jacobian is the first derivative of the least squares error
    function.
    Parameters
    ----------
    tensor_elements : array (8, )
        The six independent elements of the diffusion tensor followed by
        -log(S0) and the volume fraction f of the water elimination
        compartment. Note that if f_transform is true, volume fraction f is
        converted to ft = arcsin(2*f - 1) + pi/2
    design_matrix : array
        The design matrix
    Diso : float, optional
        Value of the free water isotropic diffusion. Default is set to 3e-3
        $mm^{2}.s^{-1}$. Please adjust this value if you are assuming different
        units of diffusion.
    f_transform : bool, optional
        If true, the water volume fraction was converted to
        ft = arcsin(2*f - 1) + pi/2, insuring f estimates between 0 and 1.
        See fwdti.nls_fit_tensor.
    """
    tensor = np.copy(tensor_elements)
    if f_transform:
        f = 0.5 * (1 + np.sin(tensor[7] - np.pi / 2))
    else:
        f = tensor[7]
    t = np.exp(np.dot(design_matrix, tensor[:7]))
    s = np.exp(np.dot(design_matrix, np.array([Diso, 0, Diso, 0, 0, Diso, tensor[6]])))
    T = (f - 1.0) * t[:, None] * design_matrix
    S = np.zeros(design_matrix.shape)
    S[:, 6] = f * s
    if f_transform:
        df = (t - s) * (0.5 * np.cos(tensor[7] - np.pi / 2))
    else:
        df = t - s
    return np.concatenate((T - S, df[:, None]), axis=1)
[docs]
@warning_for_keywords()
def nls_iter(
    design_matrix,
    sig,
    S0,
    *,
    Diso=3e-3,
    mdreg=2.7e-3,
    min_signal=1.0e-6,
    cholesky=False,
    f_transform=True,
    jac=False,
    weighting=None,
    sigma=None,
):
    """Applies non linear least squares fit of the water free elimination
    model to single voxel signals.
    Parameters
    ----------
    design_matrix : array (g, 7)
        Design matrix holding the covariants used to solve for the regression
        coefficients.
    sig : array (g, )
        Diffusion-weighted signal for a single voxel data.
    S0 : float
        Non diffusion weighted signal (i.e. signal for b-value=0).
    Diso : float, optional
        Value of the free water isotropic diffusion. Default is set to 3e-3
        $mm^{2}.s^{-1}$. Please adjust this value if you are assuming different
        units of diffusion.
    mdreg : float, optimal
        DTI's mean diffusivity regularization threshold. If standard DTI
        diffusion tensor's mean diffusivity is almost near the free water
        diffusion value, the diffusion signal is assumed to be only free water
        diffusion (i.e. volume fraction will be set to 1 and tissue's diffusion
        parameters are set to zero). Default md_reg is 2.7e-3 $mm^{2}.s^{-1}$
        (corresponding to 90% of the free water diffusion value).
    min_signal : float, optional
        The minimum signal value. Needs to be a strictly positive
        number.
    cholesky : bool, optional
        If true it uses Cholesky decomposition to ensure that diffusion tensor
        is positive define.
    f_transform : bool, optional
        If true, the water volume fractions is converted during the convergence
        procedure to ft = arcsin(2*f - 1) + pi/2, insuring f estimates between
        0 and 1.
    jac : bool, optional
        True to use the Jacobian.
    weighting: str, optional
        the weighting scheme to use in considering the
        squared-error. Default behavior is to use uniform weighting. Other
        options: 'sigma' 'gmm'
    sigma: float, optional
        If the 'sigma' weighting scheme is used, a value of sigma needs to be
        provided here. According to :footcite:t:`Chang2005`, a good value to use
        is 1.5267 * std(background_noise), where background_noise is estimated
        from some part of the image known to contain no signal (only noise).
    Returns
    -------
    All parameters estimated from the free water tensor model.
    Parameters are ordered as follows:
        1) Three diffusion tensor's eigenvalues
        2) Three lines of the eigenvector matrix each containing the
           first, second and third coordinates of the eigenvector
        3) The volume fraction of the free water compartment.
    """
    # Initial guess
    params = wls_iter(
        design_matrix, sig, S0, min_signal=min_signal, Diso=Diso, mdreg=mdreg
    )
    partial_err_func = partial(
        _nls_err_func,
        Diso=Diso,
        weighting=weighting,
        sigma=sigma,
        cholesky=cholesky,
        f_transform=f_transform,
    )
    # Process voxel if it has significant signal from tissue
    if params[12] < 0.99 and np.mean(sig) > min_signal and S0 > min_signal:
        # converting evals and evecs to diffusion tensor elements
        evals = params[:3]
        evecs = params[3:12].reshape((3, 3))
        dt = lower_triangular(vec_val_vect(evecs, evals))
        # Cholesky decomposition if requested
        if cholesky:
            dt = lower_triangular_to_cholesky(dt)
        # f transformation if requested
        if f_transform:
            f = np.arcsin(2 * params[12] - 1) + np.pi / 2
        else:
            f = params[12]
        # Use the Levenberg-Marquardt algorithm wrapped in opt.leastsq
        start_params = np.concatenate((dt, [-np.log(S0), f]), axis=0)
        if jac:
            this_tensor, status = opt.leastsq(
                partial_err_func,
                start_params[:8],
                args=(design_matrix, sig),
                Dfun=_nls_jacobian_func,
            )
        else:
            this_tensor, status = opt.leastsq(
                partial_err_func, start_params[:8], args=(design_matrix, sig)
            )
        # Process tissue diffusion tensor
        if cholesky:
            this_tensor[:6] = cholesky_to_lower_triangular(this_tensor[:6])
        evals, evecs = _decompose_tensor_nan(
            from_lower_triangular(this_tensor[:6]),
            from_lower_triangular(start_params[:6]),
        )
        # Process water volume fraction f
        f = this_tensor[7]
        if f_transform:
            f = 0.5 * (1 + np.sin(f - np.pi / 2))
        params = np.concatenate(
            (evals, evecs[0], evecs[1], evecs[2], np.array([f])), axis=0
        )
    return params 
[docs]
@warning_for_keywords()
def nls_fit_tensor(
    gtab,
    data,
    *,
    mask=None,
    Diso=3e-3,
    mdreg=2.7e-3,
    min_signal=1.0e-6,
    f_transform=True,
    cholesky=False,
    jac=False,
    weighting=None,
    sigma=None,
):
    """
    Fit the water elimination tensor model using the non-linear least-squares.
    Parameters
    ----------
    gtab : a GradientTable class instance
        The gradient table containing diffusion acquisition parameters.
    data : ndarray ([X, Y, Z, ...], g)
        Data or response variables holding the data. Note that the last
        dimension should contain the data. It makes no copies of data.
    mask : array, optional
        A boolean array used to mark the coordinates in the data that should
        be analyzed that has the shape data.shape[:-1]
    Diso : float, optional
        Value of the free water isotropic diffusion. Default is set to 3e-3
        $mm^{2}.s^{-1}$. Please adjust this value if you are assuming different
        units of diffusion.
    mdreg : float, optimal
        DTI's mean diffusivity regularization threshold. If standard DTI
        diffusion tensor's mean diffusivity is almost near the free water
        diffusion value, the diffusion signal is assumed to be only free water
        diffusion (i.e. volume fraction will be set to 1 and tissue's diffusion
        parameters are set to zero). Default md_reg is 2.7e-3 $mm^{2}.s^{-1}$
        (corresponding to 90% of the free water diffusion value).
    min_signal : float, optional
        The minimum signal value. Needs to be a strictly positive
        number.
    f_transform : bool, optional
        If true, the water volume fractions is converted during the convergence
        procedure to ft = arcsin(2*f - 1) + pi/2, insuring f estimates between
        0 and 1.
    cholesky : bool, optional
        If true it uses Cholesky decomposition to ensure that diffusion tensor
        is positive define.
    jac : bool, optional
        True to use the Jacobian.
    weighting: str, optional
        the weighting scheme to use in considering the
        squared-error. Default behavior is to use uniform weighting. Other
        options: 'sigma' 'gmm'
    sigma: float, optional
        If the 'sigma' weighting scheme is used, a value of sigma needs to be
        provided here. According to :footcite:t:`Chang2005`, a good value to use
        is 1.5267 * std(background_noise), where background_noise is estimated
        from some part of the image known to contain no signal (only noise).
    Returns
    -------
    fw_params : ndarray (x, y, z, 13)
        Matrix containing in the dimension the free water model parameters in
        the following order:
            1) Three diffusion tensor's eigenvalues
            2) Three lines of the eigenvector matrix each containing the
               first, second and third coordinates of the eigenvector
            3) The volume fraction of the free water compartment
    References
    ----------
    .. footbibliography::
    """
    fw_params = np.zeros(data.shape[:-1] + (13,))
    W = design_matrix(gtab)
    # Prepare mask
    if mask is None:
        mask = np.ones(data.shape[:-1], dtype=bool)
    else:
        if mask.shape != data.shape[:-1]:
            raise ValueError("Mask is not the same shape as data.")
        mask = np.asarray(mask, dtype=bool)
    # Prepare S0
    S0 = np.mean(data[:, :, :, gtab.b0s_mask], axis=-1)
    index = ndindex(mask.shape)
    for v in index:
        if mask[v]:
            params = nls_iter(
                W,
                data[v],
                S0[v],
                Diso=Diso,
                mdreg=mdreg,
                min_signal=min_signal,
                f_transform=f_transform,
                cholesky=cholesky,
                jac=jac,
                weighting=weighting,
                sigma=sigma,
            )
            fw_params[v] = params
    return fw_params 
[docs]
def lower_triangular_to_cholesky(tensor_elements):
    """Performs Cholesky decomposition of the diffusion tensor
    Parameters
    ----------
    tensor_elements : array (6,)
        Array containing the six elements of diffusion tensor's lower
        triangular.
    Returns
    -------
    cholesky_elements : array (6,)
        Array containing the six Cholesky's decomposition elements
        (R0, R1, R2, R3, R4, R5) :footcite:p:`Koay2006b`.
    References
    ----------
    .. footbibliography::
    """
    R0 = np.sqrt(tensor_elements[0])
    R3 = tensor_elements[1] / R0
    R1 = np.sqrt(tensor_elements[2] - R3**2)
    R5 = tensor_elements[3] / R0
    R4 = (tensor_elements[4] - R3 * R5) / R1
    R2 = np.sqrt(tensor_elements[5] - R4**2 - R5**2)
    return np.array([R0, R1, R2, R3, R4, R5]) 
[docs]
def cholesky_to_lower_triangular(R):
    """Convert Cholesky decomposition elements to the diffusion tensor elements
    Parameters
    ----------
    R : array (6,)
        Array containing the six Cholesky's decomposition elements
        (R0, R1, R2, R3, R4, R5) :footcite:p:`Koay2006b`.
    Returns
    -------
    tensor_elements : array (6,)
        Array containing the six elements of diffusion tensor's lower
        triangular.
    References
    ----------
    .. footbibliography::
    """
    Dxx = R[0] ** 2
    Dxy = R[0] * R[3]
    Dyy = R[1] ** 2 + R[3] ** 2
    Dxz = R[0] * R[5]
    Dyz = R[1] * R[4] + R[3] * R[5]
    Dzz = R[2] ** 2 + R[4] ** 2 + R[5] ** 2
    return np.array([Dxx, Dxy, Dyy, Dxz, Dyz, Dzz]) 
common_fit_methods = {
    "WLLS": wls_iter,
    "WLS": wls_iter,
    "NLLS": nls_iter,
    "NLS": nls_iter,
}