import numpy as np
from numpy import dot
from scipy.special import jn
from dipy.core.geometry import sphere2cart, vec2vec_rotmat
from dipy.reconst.utils import dki_design_matrix
from dipy.testing.decorators import warning_for_keywords
# Diffusion coefficients for white matter tracts, in mm^2/s
#
# Based roughly on values from:
#
#   Pierpaoli, Basser, "Towards a Quantitative Assessment of Diffusion
#   Anisotropy", Magnetic Resonance in Medicine, 1996; 36(6):893-906.
#
diffusion_evals = np.array([1500e-6, 400e-6, 400e-6])
def _check_directions(angles):
    """
    Helper function to check if direction ground truth have the right format
    and are in cartesian coordinates
    Parameters
    ----------
    angles : array (K,2) or (K, 3)
        List of K polar angles (in degrees) for the sticks or array of K
        sticks as unit vectors.
    Returns
    -------
    sticks : (K,3)
        Sticks in cartesian coordinates.
    """
    angles = np.array(angles)
    if angles.shape[-1] == 3:
        sticks = angles
    else:
        sticks = [
            sphere2cart(1, np.deg2rad(pair[0]), np.deg2rad(pair[1])) for pair in angles
        ]
        sticks = np.array(sticks)
    return sticks
def _add_gaussian(sig, noise1, noise2):
    """
    Helper function to add_noise
    This one simply adds one of the Gaussians to the sig and ignores the other
    one.
    """
    return sig + noise1
def _add_rician(sig, noise1, noise2):
    """
    Helper function to add_noise.
    This does the same as abs(sig + complex(noise1, noise2))
    """
    return np.sqrt((sig + noise1) ** 2 + noise2**2)
def _add_rayleigh(sig, noise1, noise2):
    r"""Helper function to add_noise.
    The Rayleigh distribution is $\sqrt\{Gauss_1^2 + Gauss_2^2}$.
    """
    return sig + np.sqrt(noise1**2 + noise2**2)
[docs]
@warning_for_keywords()
def add_noise(signal, snr, S0, *, noise_type="rician", rng=None):
    r"""Add noise of specified distribution to the signal from a single voxel.
    Parameters
    ----------
    signal : 1-d ndarray
        The signal in the voxel.
    snr : float
        The desired signal-to-noise ratio. (See notes below.)
        If `snr` is None, return the signal as-is.
    S0 : float
        Reference signal for specifying `snr`.
    noise_type : string, optional
        The distribution of noise added. Can be either 'gaussian' for Gaussian
        distributed noise, 'rician' for Rice-distributed noise (default) or
        'rayleigh' for a Rayleigh distribution.
    rng : numpy.random.Generator, optional
        Random number generator for the noise. If ``None``, uses NumPy's default
        random generator.
    Returns
    -------
    signal : array, same shape as the input
        Signal with added noise.
    Notes
    -----
    SNR is defined here, following :footcite:p:`Descoteaux2007`, as
    ``S0 / sigma``, where ``sigma`` is the standard deviation of the two
    Gaussian distributions forming the real and imaginary components of the
    Rician noise distribution (see :footcite:p:`Gudbjartsson1995`).
    References
    ----------
    .. footbibliography::
    Examples
    --------
    >>> signal = np.arange(800).reshape(2, 2, 2, 100)
    >>> signal_w_noise = add_noise(signal, 10., 100., noise_type='rician')
    """
    if snr is None:
        return signal
    if rng is None:
        rng = np.random.default_rng()
    sigma = S0 / snr
    noise_adder = {
        "gaussian": _add_gaussian,
        "rician": _add_rician,
        "rayleigh": _add_rayleigh,
    }
    noise1 = rng.normal(0, sigma, size=signal.shape)
    if noise_type == "gaussian":
        noise2 = None
    else:
        noise2 = rng.normal(0, sigma, size=signal.shape)
    return noise_adder[noise_type](signal, noise1, noise2) 
[docs]
@warning_for_keywords()
def sticks_and_ball(
    gtab, *, d=0.0015, S0=1.0, angles=((0, 0), (90, 0)), fractions=(35, 35), snr=20
):
    """Simulate the signal for a Sticks & Ball model.
    See :footcite:p:`Behrens2007` for a definition of the Sticks & Ball model.
    Parameters
    ----------
    gtab : GradientTable
        Signal measurement directions.
    d : float, optional
        Diffusivity value.
    S0 : float, optional
        Unweighted signal value.
    angles : array (K, 2) or (K, 3), optional
        List of K polar angles (in degrees) for the sticks or array of K
        sticks as unit vectors.
    fractions : array-like, optional
        Percentage of each stick.  Remainder to 100 specifies isotropic
        component.
    snr : float, optional
        Signal to noise ratio, assuming Rician noise.  If set to None, no
        noise is added.
    Returns
    -------
    S : (N,) ndarray
        Simulated signal.
    sticks : (M,3)
        Sticks in cartesian coordinates.
    References
    ----------
    .. footbibliography::
    """
    fractions = [f / 100.0 for f in fractions]
    f0 = 1 - np.sum(fractions)
    S = np.zeros(len(gtab.bvals))
    sticks = _check_directions(angles)
    for i, g in enumerate(gtab.bvecs[1:]):
        S[i + 1] = f0 * np.exp(-gtab.bvals[i + 1] * d) + np.sum(
            [
                fractions[j] * np.exp(-gtab.bvals[i + 1] * d * np.dot(s, g) ** 2)
                for (j, s) in enumerate(sticks)
            ]
        )
        S[i + 1] = S0 * S[i + 1]
    S[gtab.b0s_mask] = S0
    S = add_noise(S, snr, S0)
    return S, sticks 
[docs]
def callaghan_perpendicular(q, radius):
    """Calculates the perpendicular diffusion signal E(q) in a cylinder of
    radius R using the Soderman model.
    Assumes that the pulse length is infinitely short and the diffusion time is
    infinitely long.
    See :footcite:p:`Soderman1995` for details about the Soderman model.
    Parameters
    ----------
    q : array, shape (N,)
        q-space value in 1/mm
    radius : float
        cylinder radius in mm
    Returns
    -------
    E : array, shape (N,)
        signal attenuation
    References
    ----------
    .. footbibliography::
    """
    # Eq. [6] in the paper
    numerator = (2 * jn(1, 2 * np.pi * q * radius)) ** 2
    denom = (2 * np.pi * q * radius) ** 2
    E = np.divide(numerator, denom, out=np.zeros_like(q), where=denom != 0)
    return E 
[docs]
@warning_for_keywords()
def gaussian_parallel(q, tau, *, D=0.7e-3):
    r"""Calculates the parallel Gaussian diffusion signal.
    Parameters
    ----------
    q : array, shape (N,)
        q-space value in 1/mm
    tau : float
        diffusion time in s
    D : float, optional
        diffusion constant
    Returns
    -------
    E : array, shape (N,)
        signal attenuation
    """
    return np.exp(-((2 * np.pi * q) ** 2) * tau * D) 
[docs]
@warning_for_keywords()
def cylinders_and_ball_soderman(
    gtab,
    tau,
    *,
    radii=(5e-3, 5e-3),
    D=0.7e-3,
    S0=1.0,
    angles=((0, 0), (90, 0)),
    fractions=(35, 35),
    snr=20,
):
    """Calculates the three-dimensional signal attenuation E(q) originating
    from within a cylinder of radius R using the Soderman approximation.
    The diffusion signal is assumed to be separable  perpendicular and parallel
    to the cylinder axis :footcite:p:`Assaf2004`.
    This function is basically an extension of the ball and stick model.
    Setting the radius to zero makes them equivalent.
    See :footcite:p:`Soderman1995` for details about the Soderman model.
    Parameters
    ----------
    gtab : GradientTable
        Signal measurement directions.
    tau : float
        diffusion time in s
    radii : array-like, optional
        cylinder radius in mm
    D : float, optional
        diffusion constant
    S0 : float, optional
        Unweighted signal value.
    angles : array (K, 2) or (K, 3), optional
        List of K polar angles (in degrees) for the sticks or array of K
        sticks as unit vectors.
    fractions : array-like, optional
        Percentage of each stick.  Remainder to 100 specifies isotropic
        component.
    snr : float, optional
        Signal to noise ratio, assuming Rician noise.  If set to None, no
        noise is added.
    Returns
    -------
    E : array, shape (N,)
        signal attenuation
    References
    ----------
    .. footbibliography::
    """
    qvals = np.sqrt(gtab.bvals / tau) / (2 * np.pi)
    qvecs = qvals[:, None] * gtab.bvecs
    q_norm = np.sqrt(np.einsum("ij,ij->i", qvecs, qvecs))
    fractions = [f / 100.0 for f in fractions]
    f0 = 1 - np.sum(fractions)
    S = np.zeros(len(gtab.bvals))
    sticks = _check_directions(angles)
    for i, f in enumerate(fractions):
        q_par = abs(np.dot(qvecs, sticks[i]))
        q_perp = np.sqrt(q_norm**2 - q_par**2)
        S_cylinder = callaghan_perpendicular(q_perp, radii[i]) * gaussian_parallel(
            q_par, tau, D=D
        )
        S += f * S_cylinder
    S += f0 * np.exp(-gtab.bvals * D)
    S *= S0
    S[gtab.b0s_mask] = S0
    S = add_noise(S, snr, S0)
    return S, sticks 
[docs]
@warning_for_keywords()
def single_tensor(gtab, S0=1, *, evals=None, evecs=None, snr=None, rng=None):
    """Simulate diffusion-weighted signals with a single tensor.
    See :footcite:p:`Stejskal1965`, :footcite:p:`Descoteaux2008b`.
    Parameters
    ----------
    gtab : GradientTable
        Table with information of b-values and gradient directions g.
        Note that if gtab has a btens attribute, simulations will be performed
        according to the given b-tensor B information.
    S0 : double, optional
        Strength of signal in the presence of no diffusion gradient (also
        called the ``b=0`` value).
    evals : (3,) ndarray, optional
        Eigenvalues of the diffusion tensor.  By default, values typical for
        prolate white matter are used.
    evecs : (3, 3) ndarray, optional
        Eigenvectors of the tensor.  You can also think of this as a rotation
        matrix that transforms the direction of the tensor. The eigenvectors
        need to be column wise.
    snr : float, optional
        Signal to noise ratio, assuming Rician noise.  None implies no noise.
    rng : numpy.random.Generator, optional
        Random number generator for the noise. If ``None``, uses NumPy's default
        random generator.
    Returns
    -------
    S : (N,) ndarray
        Simulated signal:
            ``S(b, g) = S_0 e^(-b g^T R D R.T g)``, if gtab.tens=None
            ``S(B) = S_0 e^(-B:D)``, if gtab.tens information is given
    References
    ----------
    .. footbibliography::
    """
    if rng is None:
        rng = np.random.default_rng()
    if evals is None:
        evals = diffusion_evals
    if evecs is None:
        evecs = np.eye(3)
    out_shape = gtab.bvecs.shape[: gtab.bvecs.ndim - 1]
    gradients = gtab.bvecs.reshape(-1, 3)
    R = np.asarray(evecs)
    S = np.zeros(len(gradients))
    D = dot(dot(R, np.diag(evals)), R.T)
    if gtab.btens is None:
        for i, g in enumerate(gradients):
            S[i] = S0 * np.exp(-gtab.bvals[i] * dot(dot(g.T, D), g))
    else:
        for i, b in enumerate(gtab.btens):
            S[i] = S0 * np.exp(-np.sum(b * D))
    S = add_noise(S, snr, S0, rng=rng)
    return S.reshape(out_shape) 
[docs]
@warning_for_keywords()
def multi_tensor(
    gtab,
    mevals,
    *,
    S0=1.0,
    angles=((0, 0), (90, 0)),
    fractions=(50, 50),
    snr=20,
    rng=None,
):
    r"""Simulate a Multi-Tensor signal.
    Parameters
    ----------
    gtab : GradientTable
        Table with information of b-values and gradient directions.
        Note that if gtab has a btens attribute, simulations will be performed
        according to the given b-tensor information.
    mevals : array (K, 3)
        each tensor's eigenvalues in each row
    S0 : float, optional
        Unweighted signal value (b0 signal).
    angles : array (K, 2) or (K, 3), optional
        List of K tensor directions in polar angles (in degrees) or unit
        vectors
    fractions : array-like, optional
        Percentage of the contribution of each tensor. The sum of fractions
        should be equal to 100%.
    snr : float, optional
        Signal to noise ratio, assuming Rician noise.  If set to None, no
        noise is added.
    rng : numpy.random.Generator, optional
        Random number generator for the noise. If ``None``, uses NumPy's default
        random generator.
    Returns
    -------
    S : (N,) ndarray
        Simulated signal.
    sticks : (M,3)
        Sticks in cartesian coordinates.
    Examples
    --------
    >>> import numpy as np
    >>> from dipy.sims.voxel import multi_tensor
    >>> from dipy.data import get_fnames
    >>> from dipy.core.gradients import gradient_table
    >>> from dipy.io.gradients import read_bvals_bvecs
    >>> fimg, fbvals, fbvecs = get_fnames(name='small_101D')
    >>> bvals, bvecs = read_bvals_bvecs(fbvals, fbvecs)
    >>> gtab = gradient_table(bvals, bvecs=bvecs)
    >>> mevals=np.array(([0.0015, 0.0003, 0.0003],[0.0015, 0.0003, 0.0003]))
    >>> e0 = np.array([1, 0, 0.])
    >>> e1 = np.array([0., 1, 0])
    >>> S = multi_tensor(gtab, mevals)
    """
    if rng is None:
        rng = np.random.default_rng()
    if np.round(np.sum(fractions), 2) != 100.0:
        raise ValueError("Fractions should sum to 100")
    fractions = [f / 100.0 for f in fractions]
    S = np.zeros(len(gtab.bvals))
    sticks = _check_directions(angles)
    for i in range(len(fractions)):
        S = S + fractions[i] * single_tensor(
            gtab, S0=S0, evals=mevals[i], evecs=all_tensor_evecs(sticks[i]), snr=None
        )
    return add_noise(S, snr, S0, rng=rng), sticks 
[docs]
@warning_for_keywords()
def multi_tensor_dki(
    gtab,
    mevals,
    *,
    S0=1.0,
    angles=((90.0, 0.0), (90.0, 0.0)),
    fractions=(50, 50),
    snr=20,
):
    r"""Simulate the diffusion-weight signal, diffusion and kurtosis tensors
    based on the DKI model
    See :footcite:p:`NetoHenriques2015` for further details.
    Parameters
    ----------
    gtab : GradientTable
        Gradient table.
    mevals : array (K, 3)
        eigenvalues of the diffusion tensor for each individual compartment
    S0 : float, optional
        Unweighted signal value (b0 signal).
    angles : array (K,2) or (K,3), optional
        List of K tensor directions of the diffusion tensor of each compartment
        in polar angles (in degrees) or unit vectors
    fractions : float (K,), optional
        Percentage of the contribution of each tensor. The sum of fractions
        should be equal to 100%.
    snr : float, optional
        Signal to noise ratio, assuming Rician noise.  If set to None, no
        noise is added.
    Returns
    -------
    S : (N,) ndarray
        Simulated signal based on the DKI model.
    dt : (6,)
        elements of the diffusion tensor.
    kt : (15,)
        elements of the kurtosis tensor.
    Notes
    -----
    Simulations are based on multicompartmental models which assumes that
    tissue is well described by impermeable diffusion compartments
    characterized by their only diffusion tensor. Since simulations are based
    on the DKI model, coefficients larger than the fourth order of the signal's
    taylor expansion approximation are neglected.
    Examples
    --------
    >>> import numpy as np
    >>> from dipy.sims.voxel import multi_tensor_dki
    >>> from dipy.data import get_fnames
    >>> from dipy.core.gradients import gradient_table
    >>> from dipy.io.gradients import read_bvals_bvecs
    >>> fimg, fbvals, fbvecs = get_fnames(name='small_64D')
    >>> bvals, bvecs = read_bvals_bvecs(fbvals, fbvecs)
    >>> bvals_2s = np.concatenate((bvals, bvals * 2), axis=0)
    >>> bvecs_2s = np.concatenate((bvecs, bvecs), axis=0)
    >>> gtab = gradient_table(bvals_2s, bvecs=bvecs_2s)
    >>> mevals = np.array([[0.00099, 0, 0],[0.00226, 0.00087, 0.00087]])
    >>> S, dt, kt =  multi_tensor_dki(gtab, mevals)
    References
    ----------
    .. footbibliography::
    """
    if np.round(np.sum(fractions), 2) != 100.0:
        raise ValueError("Fractions should sum to 100")
    fractions = [f / 100.0 for f in fractions]
    # S = np.zeros(len(gtab.bvals))
    sticks = _check_directions(angles)
    # computing a 3D matrix containing the individual DT components
    D_comps = np.zeros((len(fractions), 3, 3))
    for i in range(len(fractions)):
        R = all_tensor_evecs(sticks[i])
        D_comps[i] = dot(dot(R, np.diag(mevals[i])), R.T)
    # compute voxel's DT
    DT = np.zeros((3, 3))
    for i in range(len(fractions)):
        DT = DT + fractions[i] * D_comps[i]
    dt = np.array([DT[0][0], DT[0][1], DT[1][1], DT[0][2], DT[1][2], DT[2][2]])
    # compute voxel's MD
    MD = (DT[0][0] + DT[1][1] + DT[2][2]) / 3
    # compute voxel's KT
    kt = np.zeros(15)
    kt[0] = kurtosis_element(D_comps, fractions, 0, 0, 0, 0, DT=DT, MD=MD)
    kt[1] = kurtosis_element(D_comps, fractions, 1, 1, 1, 1, DT=DT, MD=MD)
    kt[2] = kurtosis_element(D_comps, fractions, 2, 2, 2, 2, DT=DT, MD=MD)
    kt[3] = kurtosis_element(D_comps, fractions, 0, 0, 0, 1, DT=DT, MD=MD)
    kt[4] = kurtosis_element(D_comps, fractions, 0, 0, 0, 2, DT=DT, MD=MD)
    kt[5] = kurtosis_element(D_comps, fractions, 0, 1, 1, 1, DT=DT, MD=MD)
    kt[6] = kurtosis_element(D_comps, fractions, 1, 1, 1, 2, DT=DT, MD=MD)
    kt[7] = kurtosis_element(D_comps, fractions, 0, 2, 2, 2, DT=DT, MD=MD)
    kt[8] = kurtosis_element(D_comps, fractions, 1, 2, 2, 2, DT=DT, MD=MD)
    kt[9] = kurtosis_element(D_comps, fractions, 0, 0, 1, 1, DT=DT, MD=MD)
    kt[10] = kurtosis_element(D_comps, fractions, 0, 0, 2, 2, DT=DT, MD=MD)
    kt[11] = kurtosis_element(D_comps, fractions, 1, 1, 2, 2, DT=DT, MD=MD)
    kt[12] = kurtosis_element(D_comps, fractions, 0, 0, 1, 2, DT=DT, MD=MD)
    kt[13] = kurtosis_element(D_comps, fractions, 0, 1, 1, 2, DT=DT, MD=MD)
    kt[14] = kurtosis_element(D_comps, fractions, 0, 1, 2, 2, DT=DT, MD=MD)
    # compute S based on the DT and KT
    S = dki_signal(gtab, dt, kt, S0=S0, snr=snr)
    return S, dt, kt 
[docs]
@warning_for_keywords()
def kurtosis_element(D_comps, frac, ind_i, ind_j, ind_k, ind_l, *, DT=None, MD=None):
    r"""Computes the diffusion kurtosis tensor element (with indexes i, j, k
    and l) based on the individual diffusion tensor components of a
    multicompartmental model.
    Parameters
    ----------
    D_comps : (K,3,3) ndarray
        Diffusion tensors for all K individual compartment of the
        multicompartmental model.
    frac : [float]
        Percentage of the contribution of each tensor. The sum of fractions
        should be equal to 100%.
    ind_i : int
        Element's index i (0 for x, 1 for y, 2 for z)
    ind_j : int
        Element's index j (0 for x, 1 for y, 2 for z)
    ind_k : int
        Element's index k (0 for x, 1 for y, 2 for z)
    ind_l: int
        Elements index l (0 for x, 1 for y, 2 for z)
    DT : (3,3) ndarray, optional
        Voxel's global diffusion tensor.
    MD : float, optional
        Voxel's global mean diffusivity.
    Returns
    -------
    wijkl : float
        kurtosis tensor element of index i, j, k, l
    Notes
    -----
    wijkl is calculated using equation 8 given in
    :footcite:p:`NetoHenriques2015`.
    References
    ----------
    .. footbibliography::
    """
    if DT is None:
        DT = np.zeros((3, 3))
        for i in range(len(frac)):
            DT = DT + frac[i] * D_comps[i]
    if MD is None:
        MD = (DT[0][0] + DT[1][1] + DT[2][2]) / 3
    wijkl = 0
    for f in range(len(frac)):
        wijkl = wijkl + frac[f] * (
            D_comps[f][ind_i][ind_j] * D_comps[f][ind_k][ind_l]
            + D_comps[f][ind_i][ind_k] * D_comps[f][ind_j][ind_l]
            + D_comps[f][ind_i][ind_l] * D_comps[f][ind_j][ind_k]
        )
    wijkl = (
        wijkl
        - DT[ind_i][ind_j] * DT[ind_k][ind_l]
        - DT[ind_i][ind_k] * DT[ind_j][ind_l]
        - DT[ind_i][ind_l] * DT[ind_j][ind_k]
    ) / (MD**2)
    return wijkl 
[docs]
@warning_for_keywords()
def dki_signal(gtab, dt, kt, *, S0=150, snr=None):
    r"""Simulated signal based on the diffusion and diffusion kurtosis
    tensors of a single voxel. Simulations are performed assuming the DKI
    model.
    See :footcite:p:`NetoHenriques2015` for further details.
    Parameters
    ----------
    gtab : GradientTable
        Measurement directions.
    dt : (6,) ndarray
        Elements of the diffusion tensor.
    kt : (15, ) ndarray
        Elements of the diffusion kurtosis tensor.
    S0 : float, optional
        Strength of signal in the presence of no diffusion gradient.
    snr : float, optional
        Signal to noise ratio, assuming Rician noise.  None implies no noise.
    Returns
    -------
    S : (N,) ndarray
        Simulated signal based on the DKI model:
    .. math::
        S=S_{0}e^{-bD+\frac{1}{6}b^{2}D^{2}K}
    References
    ----------
    .. footbibliography::
    """
    dt = np.array(dt)
    kt = np.array(kt)
    A = dki_design_matrix(gtab)
    # define vector of DKI parameters
    MD = (dt[0] + dt[2] + dt[5]) / 3
    X = np.concatenate((dt, kt * MD * MD, np.array([-np.log(S0)])), axis=0)
    # Compute signals based on the DKI model
    S = np.exp(dot(A, X))
    S = add_noise(S, snr, S0)
    return S 
[docs]
@warning_for_keywords()
def single_tensor_odf(r, *, evals=None, evecs=None):
    """Simulated ODF with a single tensor.
    See :footcite:p:`Aganj2010` for further details.
    Parameters
    ----------
    r : (N,3) or (M,N,3) ndarray
        Measurement positions in (x, y, z), either as a list or on a grid.
    evals : (3,)
        Eigenvalues of diffusion tensor.  By default, use values typical for
        prolate white matter.
    evecs : (3, 3) ndarray
        Eigenvectors of the tensor, written column-wise.  You can also think
        of these as the rotation matrix that determines the orientation of
        the diffusion tensor.
    Returns
    -------
    ODF : (N,) ndarray
        The diffusion probability at ``r`` after time ``tau``.
    References
    ----------
    .. footbibliography::
    """
    if evals is None:
        evals = diffusion_evals
    if evecs is None:
        evecs = np.eye(3)
    out_shape = r.shape[: r.ndim - 1]
    R = np.asarray(evecs)
    D = dot(dot(R, np.diag(evals)), R.T)
    Di = np.linalg.inv(D)
    r = r.reshape(-1, 3)
    P = np.zeros(len(r))
    for i, u in enumerate(r):
        P[i] = (dot(dot(u.T, Di), u)) ** (3 / 2)
    return (1 / (4 * np.pi * np.prod(evals) ** (1 / 2) * P)).reshape(out_shape) 
[docs]
def all_tensor_evecs(e0):
    """Given the principle tensor axis, return the array of all
    eigenvectors column-wise (or, the rotation matrix that orientates the
    tensor).
    Parameters
    ----------
    e0 : (3,) ndarray
        Principle tensor axis.
    Returns
    -------
    evecs : (3,3) ndarray
        Tensor eigenvectors, arranged column-wise.
    """
    axes = np.eye(3)
    mat = vec2vec_rotmat(axes[0], e0)
    e1 = np.dot(mat, axes[1])
    e2 = np.dot(mat, axes[2])
    # Return the eigenvectors column-wise:
    return np.array([e0, e1, e2]).T 
[docs]
def multi_tensor_odf(odf_verts, mevals, angles, fractions):
    """Simulate a Multi-Tensor ODF.
    Parameters
    ----------
    odf_verts : (N,3) ndarray
        Vertices of the reconstruction sphere.
    mevals : sequence of 1D arrays,
        Eigen-values for each tensor.
    angles : sequence of 2d tuples,
        Sequence of principal directions for each tensor in polar angles
        or cartesian unit coordinates.
    fractions : sequence of floats,
        Percentages of the fractions for each tensor.
    Returns
    -------
    ODF : (N,) ndarray
        Orientation distribution function.
    Examples
    --------
    Simulate a MultiTensor ODF with two peaks and calculate its exact ODF.
    >>> import numpy as np
    >>> from dipy.sims.voxel import multi_tensor_odf, all_tensor_evecs
    >>> from dipy.data import default_sphere
    >>> vertices, faces = default_sphere.vertices, default_sphere.faces
    >>> mevals = np.array(([0.0015, 0.0003, 0.0003],[0.0015, 0.0003, 0.0003]))
    >>> angles = [(0, 0), (90, 0)]
    >>> odf = multi_tensor_odf(vertices, mevals, angles, [50, 50])
    """
    mf = [f / 100.0 for f in fractions]
    sticks = _check_directions(angles)
    odf = np.zeros(len(odf_verts))
    mevecs = []
    for s in sticks:
        mevecs += [all_tensor_evecs(s)]
    for j, f in enumerate(mf):
        odf += f * single_tensor_odf(odf_verts, evals=mevals[j], evecs=mevecs[j])
    return odf 
[docs]
@warning_for_keywords()
def single_tensor_rtop(*, evals=None, tau=1.0 / (4 * np.pi**2)):
    """Simulate a Single-Tensor rtop.
    See :footcite:p:`Cheng2012` for further details.
    Parameters
    ----------
    evals : 1D arrays, optional
        Eigen-values for the tensor.  By default, values typical for prolate
        white matter are used.
    tau : float, optional
        diffusion time. By default the value that makes q=sqrt(b).
    Returns
    -------
    rtop : float,
        Return to origin probability.
    References
    ----------
    .. footbibliography::
    """
    if evals is None:
        evals = diffusion_evals
    rtop = 1.0 / np.sqrt((4 * np.pi * tau) ** 3 * np.prod(evals))
    return rtop 
[docs]
@warning_for_keywords()
def multi_tensor_rtop(mf, *, mevals=None, tau=1 / (4 * np.pi**2)):
    """Simulate a Multi-Tensor rtop.
    See :footcite:p:`Cheng2012` for further details.
    Parameters
    ----------
    mf : sequence of floats, bounded [0,1]
        Percentages of the fractions for each tensor.
    mevals : sequence of 1D arrays, optional
        Eigen-values for each tensor.  By default, values typical for prolate
        white matter are used.
    tau : float, optional
        diffusion time. By default the value that makes q=sqrt(b).
    Returns
    -------
    rtop : float,
        Return to origin probability.
    References
    ----------
    .. footbibliography::
    """
    rtop = 0
    if mevals is None:
        mevals = [
            None,
        ] * len(mf)
    for j, f in enumerate(mf):
        rtop += f * single_tensor_rtop(evals=mevals[j], tau=tau)
    return rtop 
[docs]
@warning_for_keywords()
def single_tensor_pdf(r, *, evals=None, evecs=None, tau=1 / (4 * np.pi**2)):
    """Simulated ODF with a single tensor.
    See :footcite:p:`Cheng2012` for further details.
    Parameters
    ----------
    r : (N,3) or (M,N,3) ndarray
        Measurement positions in (x, y, z), either as a list or on a grid.
    evals : (3,), optional
        Eigenvalues of diffusion tensor.  By default, use values typical for
        prolate white matter.
    evecs : (3, 3) ndarray, optional
        Eigenvectors of the tensor.  You can also think of these as the
        rotation matrix that determines the orientation of the diffusion
        tensor.
    tau : float, optional
        diffusion time. By default the value that makes q=sqrt(b).
    Returns
    -------
    pdf : (N,) ndarray
        The diffusion probability at ``r`` after time ``tau``.
    References
    ----------
    .. footbibliography::
    """
    if evals is None:
        evals = diffusion_evals
    if evecs is None:
        evecs = np.eye(3)
    out_shape = r.shape[: r.ndim - 1]
    R = np.asarray(evecs)
    D = dot(dot(R, np.diag(evals)), R.T)
    Di = np.linalg.inv(D)
    r = r.reshape(-1, 3)
    P = np.zeros(len(r))
    for i, u in enumerate(r):
        P[i] = (-dot(dot(u.T, Di), u)) / (4 * tau)
    pdf = (1 / np.sqrt((4 * np.pi * tau) ** 3 * np.prod(evals))) * np.exp(P)
    return pdf.reshape(out_shape) 
[docs]
@warning_for_keywords()
def multi_tensor_pdf(pdf_points, mevals, angles, fractions, *, tau=1 / (4 * np.pi**2)):
    """Simulate a Multi-Tensor ODF.
    See :footcite:p:`Cheng2012` for further details.
    Parameters
    ----------
    pdf_points : (N, 3) ndarray
        Points to evaluate the PDF.
    mevals : sequence of 1D arrays,
        Eigen-values for each tensor.  By default, values typical for prolate
        white matter are used.
    angles : sequence,
        Sequence of principal directions for each tensor in polar angles
        or cartesian unit coordinates.
    fractions : sequence of floats,
        Percentages of the fractions for each tensor.
    tau : float, optional
        diffusion time. By default the value that makes q=sqrt(b).
    Returns
    -------
    pdf : (N,) ndarray,
        Probability density function of the water displacement.
    References
    ----------
    .. footbibliography::
    """
    mf = [f / 100.0 for f in fractions]
    sticks = _check_directions(angles)
    pdf = np.zeros(len(pdf_points))
    mevecs = []
    for s in sticks:
        mevecs += [all_tensor_evecs(s)]
    for j, f in enumerate(mf):
        pdf += f * single_tensor_pdf(
            pdf_points, evals=mevals[j], evecs=mevecs[j], tau=tau
        )
    return pdf 
[docs]
@warning_for_keywords()
def single_tensor_msd(*, evals=None, tau=1 / (4 * np.pi**2)):
    """Simulate a Multi-Tensor rtop.
    See :footcite:p:`Cheng2012` for further details.
    Parameters
    ----------
    evals : 1D arrays, optional
        Eigen-values for the tensor.  By default, values typical for prolate
        white matter are used.
    tau : float, optional
        diffusion time. By default the value that makes q=sqrt(b).
    Returns
    -------
    msd : float,
        Mean square displacement.
    References
    ----------
    .. footbibliography::
    """
    if evals is None:
        evals = diffusion_evals
    msd = 2 * tau * np.sum(evals)
    return msd 
[docs]
@warning_for_keywords()
def multi_tensor_msd(mf, *, mevals=None, tau=1 / (4 * np.pi**2)):
    """Simulate a Multi-Tensor rtop.
    See :footcite:p:`Cheng2012` for further details.
    Parameters
    ----------
    mf : sequence of floats, bounded [0,1]
        Percentages of the fractions for each tensor.
    mevals : sequence of 1D arrays, optional
        Eigen-values for each tensor.  By default, values typical for prolate
        white matter are used.
    tau : float, optional
        diffusion time. By default the value that makes q=sqrt(b).
    Returns
    -------
    msd : float,
        Mean square displacement.
    References
    ----------
    .. footbibliography::
    """
    msd = 0
    if mevals is None:
        mevals = [
            None,
        ] * len(mf)
    for j, f in enumerate(mf):
        msd += f * single_tensor_msd(evals=mevals[j], tau=tau)
    return msd