"""Metrics for tracks, where tracks are arrays of points"""
import numpy as np
from scipy.interpolate import splev, splprep
from dipy.testing.decorators import warning_for_keywords
[docs]
def winding(xyz):
    """Total turning angle projected.
    Project space curve to best fitting plane. Calculate the cumulative signed
    angle between each line segment and the previous one.
    Parameters
    ----------
    xyz : array-like shape (N,3)
        Array representing x,y,z of N points in a track.
    Returns
    -------
    a : scalar
        Total turning angle in degrees.
    """
    U, s, V = np.linalg.svd(xyz - np.mean(xyz, axis=0), 0)
    proj = np.dot(U[:, 0:2], np.diag(s[0:2]))
    turn = 0
    for j in range(len(xyz) - 1):
        v0 = proj[j]
        v1 = proj[j + 1]
        v = np.dot(v0, v1) / (np.linalg.norm(v0) * np.linalg.norm(v1))
        v = np.clip(v, -1, 1)
        tmp = np.arccos(v)
        turn += tmp
    return np.rad2deg(turn) 
[docs]
@warning_for_keywords()
def length(xyz, *, along=False):
    """Euclidean length of track line
    This will give length in mm if tracks are expressed in world coordinates.
    Parameters
    ----------
    xyz : array-like shape (N,3)
       array representing x,y,z of N points in a track
    along : bool, optional
       If True, return array giving cumulative length along track,
       otherwise (default) return scalar giving total length.
    Returns
    -------
    L : scalar or array shape (N-1,)
       scalar in case of `along` == False, giving total length, array if
       `along` == True, giving cumulative lengths.
    Examples
    --------
    >>> from dipy.tracking.metrics import length
    >>> xyz = np.array([[1,1,1],[2,3,4],[0,0,0]])
    >>> expected_lens = np.sqrt([1+2**2+3**2, 2**2+3**2+4**2])
    >>> length(xyz) == expected_lens.sum()
    True
    >>> len_along = length(xyz, along=True)
    >>> np.allclose(len_along, expected_lens.cumsum())
    True
    >>> length([])
    0
    >>> length([[1, 2, 3]])
    0
    >>> length([], along=True)
    array([0])
    """
    xyz = np.asarray(xyz)
    if xyz.shape[0] < 2:
        if along:
            return np.array([0])
        return 0
    dists = np.sqrt((np.diff(xyz, axis=0) ** 2).sum(axis=1))
    if along:
        return np.cumsum(dists)
    return np.sum(dists) 
[docs]
def bytes(xyz):
    """Size of track in bytes.
    Parameters
    ----------
    xyz : array-like shape (N,3)
       Array representing x,y,z of N points in a track.
    Returns
    -------
    b : int
        Number of bytes.
    """
    return xyz.nbytes 
[docs]
def midpoint(xyz):
    """Midpoint of track
    Parameters
    ----------
    xyz : array-like shape (N,3)
       array representing x,y,z of N points in a track
    Returns
    -------
    mp : array shape (3,)
       Middle point of line, such that, if L is the line length then
       `np` is the point such that the length xyz[0] to `mp` and from
       `mp` to xyz[-1] is L/2.  If the middle point is not a point in
       `xyz`, then we take the interpolation between the two nearest
       `xyz` points.  If `xyz` is empty, return a ValueError
    Examples
    --------
    >>> from dipy.tracking.metrics import midpoint
    >>> midpoint([])
    Traceback (most recent call last):
       ...
    ValueError: xyz array cannot be empty
    >>> midpoint([[1, 2, 3]])
    array([1, 2, 3])
    >>> xyz = np.array([[1,1,1],[2,3,4]])
    >>> midpoint(xyz)
    array([ 1.5,  2. ,  2.5])
    >>> xyz = np.array([[0,0,0],[1,1,1],[2,2,2]])
    >>> midpoint(xyz)
    array([ 1.,  1.,  1.])
    >>> xyz = np.array([[0,0,0],[1,0,0],[3,0,0]])
    >>> midpoint(xyz)
    array([ 1.5,  0. ,  0. ])
    >>> xyz = np.array([[0,9,7],[1,9,7],[3,9,7]])
    >>> midpoint(xyz)
    array([ 1.5,  9. ,  7. ])
    """
    xyz = np.asarray(xyz)
    n_pts = xyz.shape[0]
    if n_pts == 0:
        raise ValueError("xyz array cannot be empty")
    if n_pts == 1:
        return xyz.copy().squeeze()
    cumlen = np.zeros(n_pts)
    cumlen[1:] = length(xyz, along=True)
    midlen = cumlen[-1] / 2.0
    ind = np.where((cumlen - midlen) > 0)[0][0]
    len0 = cumlen[ind - 1]
    len1 = cumlen[ind]
    Ds = midlen - len0
    Lambda = Ds / (len1 - len0)
    return Lambda * xyz[ind] + (1 - Lambda) * xyz[ind - 1] 
[docs]
def center_of_mass(xyz):
    """Center of mass of streamline
    Parameters
    ----------
    xyz : array-like shape (N,3)
       array representing x,y,z of N points in a track
    Returns
    -------
    com : array shape (3,)
       center of mass of streamline
    Examples
    --------
    >>> from dipy.tracking.metrics import center_of_mass
    >>> center_of_mass([])
    Traceback (most recent call last):
       ...
    ValueError: xyz array cannot be empty
    >>> center_of_mass([[1,1,1]])
    array([ 1.,  1.,  1.])
    >>> xyz = np.array([[0,0,0],[1,1,1],[2,2,2]])
    >>> center_of_mass(xyz)
    array([ 1.,  1.,  1.])
    """
    xyz = np.asarray(xyz)
    if xyz.size == 0:
        raise ValueError("xyz array cannot be empty")
    return np.mean(xyz, axis=0) 
[docs]
@warning_for_keywords()
def magn(xyz, *, n=1):
    """magnitude of vector"""
    mag = np.sum(xyz**2, axis=1) ** 0.5
    imag = np.where(mag == 0)
    mag[imag] = np.finfo(float).eps
    if n > 1:
        return np.tile(mag, (n, 1)).T
    return mag.reshape(len(mag), 1) 
[docs]
def frenet_serret(xyz):
    r"""Frenet-Serret Space Curve Invariants
    Calculates the 3 vector and 2 scalar invariants of a space curve
    defined by vectors r = (x,y,z).  If z is omitted (i.e. the array xyz has
    shape (N,2)), then the curve is
    only 2D (planar), but the equations are still valid.
    Similar to
    https://www.mathworks.com/matlabcentral/fileexchange/11169-frenet
    In the following equations the prime ($'$) indicates differentiation
    with respect to the parameter $s$ of a parametrised curve $\mathbf{r}(s)$.
    - $\mathbf{T}=\mathbf{r'}/|\mathbf{r'}|\qquad$ (Tangent vector)}
    - $\mathbf{N}=\mathbf{T'}/|\mathbf{T'}|\qquad$ (Normal vector)
    - $\mathbf{B}=\mathbf{T}\times\mathbf{N}\qquad$ (Binormal vector)
    - $\kappa=|\mathbf{T'}|\qquad$ (Curvature)
    - $\mathrm{\tau}=-\mathbf{B'}\cdot\mathbf{N}$ (Torsion)
    Parameters
    ----------
    xyz : array-like shape (N,3)
       array representing x,y,z of N points in a track
    Returns
    -------
    T : array shape (N,3)
        array representing the tangent of the curve xyz
    N : array shape (N,3)
        array representing the normal of the curve xyz
    B : array shape (N,3)
        array representing the binormal of the curve xyz
    k : array shape (N,1)
        array representing the curvature of the curve xyz
    t : array shape (N,1)
        array representing the torsion of the curve xyz
    Examples
    --------
    Create a helix and calculate its tangent, normal, binormal, curvature
    and torsion
    >>> from dipy.tracking import metrics as tm
    >>> import numpy as np
    >>> theta = 2*np.pi*np.linspace(0,2,100)
    >>> x=np.cos(theta)
    >>> y=np.sin(theta)
    >>> z=theta/(2*np.pi)
    >>> xyz=np.vstack((x,y,z)).T
    >>> T,N,B,k,t=tm.frenet_serret(xyz)
    """
    xyz = np.asarray(xyz)
    n_pts = xyz.shape[0]
    if n_pts == 0:
        raise ValueError("xyz array cannot be empty")
    dxyz = np.gradient(xyz)[0]
    ddxyz = np.gradient(dxyz)[0]
    # Tangent
    T = np.divide(dxyz, magn(dxyz, n=3))
    # Derivative of Tangent
    dT = np.gradient(T)[0]
    # Normal
    N = np.divide(dT, magn(dT, n=3))
    # Binormal
    B = np.cross(T, N)
    # Curvature
    k = magn(np.cross(dxyz, ddxyz), n=1) / (magn(dxyz, n=1) ** 3)
    # Torsion
    # (In matlab was t=dot(-B,N,2))
    t = np.sum(-B * N, axis=1)
    # return T,N,B,k,t,dxyz,ddxyz,dT
    return T, N, B, k, t 
[docs]
def mean_curvature(xyz):
    """Calculates the mean curvature of a curve
    Parameters
    ----------
    xyz : array-like shape (N,3)
       array representing x,y,z of N points in a curve
    Returns
    -------
    m : float
        Mean curvature.
    Examples
    --------
    Create a straight line and a semi-circle and print their mean curvatures
    >>> from dipy.tracking import metrics as tm
    >>> import numpy as np
    >>> x=np.linspace(0,1,100)
    >>> y=0*x
    >>> z=0*x
    >>> xyz=np.vstack((x,y,z)).T
    >>> m=tm.mean_curvature(xyz) #mean curvature straight line
    >>> theta=np.pi*np.linspace(0,1,100)
    >>> x=np.cos(theta)
    >>> y=np.sin(theta)
    >>> z=0*x
    >>> xyz=np.vstack((x,y,z)).T
    >>> _= tm.mean_curvature(xyz) #mean curvature for semi-circle
    """
    xyz = np.asarray(xyz)
    n_pts = xyz.shape[0]
    if n_pts == 0:
        raise ValueError("xyz array cannot be empty")
    dxyz = np.gradient(xyz)[0]
    ddxyz = np.gradient(dxyz)[0]
    # Curvature
    k = magn(np.cross(dxyz, ddxyz), n=1) / (magn(dxyz, n=1) ** 3)
    return np.mean(k) 
[docs]
def mean_orientation(xyz):
    """
    Calculates the mean orientation of a curve
    Parameters
    ----------
    xyz : array-like shape (N,3)
       array representing x,y,z of N points in a curve
    Returns
    -------
    m : float
        Mean orientation.
    """
    xyz = np.asarray(xyz)
    n_pts = xyz.shape[0]
    if n_pts == 0:
        raise ValueError("xyz array cannot be empty")
    dxyz = np.gradient(xyz)[0]
    return np.mean(dxyz, axis=0) 
[docs]
def generate_combinations(items, n):
    """Combine sets of size n from items
    Parameters
    ----------
    items : sequence
    n : int
    Returns
    -------
    ic : iterator
    Examples
    --------
    >>> from dipy.tracking.metrics import generate_combinations
    >>> ic=generate_combinations(range(3),2)
    >>> for i in ic: print(i)
    [0, 1]
    [0, 2]
    [1, 2]
    """
    if n == 0:
        yield []
    elif n == 2:
        # if n=2 non_recursive
        for i in range(len(items) - 1):
            for j in range(i + 1, len(items)):
                yield [i, j]
    else:
        # if n>2 uses recursion
        for i in range(len(items)):
            for cc in generate_combinations(items[i + 1 :], n - 1):
                yield [items[i]] + cc 
[docs]
@warning_for_keywords()
def longest_track_bundle(bundle, *, sort=False):
    """Return longest track or length sorted track indices in `bundle`
    If `sort` == True, return the indices of the sorted tracks in the
    bundle, otherwise return the longest track.
    Parameters
    ----------
    bundle : sequence
       of tracks as arrays, shape (N1,3) ... (Nm,3)
    sort : bool, optional
       If False (default) return longest track.  If True, return length
       sorted indices for tracks in bundle
    Returns
    -------
    longest_or_indices : array
       longest track - shape (N,3) -  (if `sort` is False), or indices
       of length sorted tracks (if `sort` is True)
    Examples
    --------
    >>> from dipy.tracking.metrics import longest_track_bundle
    >>> import numpy as np
    >>> bundle = [np.array([[0,0,0],[2,2,2]]),np.array([[0,0,0],[4,4,4]])]
    >>> longest_track_bundle(bundle)
    array([[0, 0, 0],
           [4, 4, 4]])
    >>> longest_track_bundle(bundle, sort=True) #doctest: +ELLIPSIS
    array([0, 1]...)
    """
    alllengths = [length(t) for t in bundle]
    alllengths = np.array(alllengths)
    if sort:
        ilongest = alllengths.argsort()
        return ilongest
    else:
        ilongest = alllengths.argmax()
        return bundle[ilongest] 
[docs]
def intersect_sphere(xyz, center, radius):
    """If any segment of the track is intersecting with a sphere of
    specific center and radius return True otherwise False
    Parameters
    ----------
    xyz : array, shape (N,3)
       representing x,y,z of the N points of the track
    center : array, shape (3,)
       center of the sphere
    radius : float
       radius of the sphere
    Returns
    -------
    tf : {True, False}
       True if track `xyz` intersects sphere
    >>> from dipy.tracking.metrics import intersect_sphere
    >>> line=np.array(([0,0,0],[1,1,1],[2,2,2]))
    >>> sph_cent=np.array([1,1,1])
    >>> sph_radius = 1
    >>> intersect_sphere(line,sph_cent,sph_radius)
    True
    Notes
    -----
    The ray to sphere intersection method used here is similar with
    https://paulbourke.net/geometry/circlesphere/
    https://paulbourke.net/geometry/circlesphere/source.cpp
    we just applied it for every segment neglecting the intersections where
    the intersecting points are not inside the segment
    """
    center = np.array(center)
    # print center
    lt = xyz.shape[0]
    for i in range(lt - 1):
        # first point
        x1 = xyz[i]
        # second point
        x2 = xyz[i + 1]
        # do the calculations as given in the Notes
        x = x2 - x1
        a = np.inner(x, x)
        x1c = x1 - center
        b = 2 * np.inner(x, x1c)
        c = (
            np.inner(center, center)
            + np.inner(x1, x1)
            - 2 * np.inner(center, x1)
            - radius**2
        )
        bb4ac = b * b - 4 * a * c
        # print 'bb4ac',bb4ac
        if abs(a) < np.finfo(float).eps or bb4ac < 0:  # too small segment or
            # no intersection
            continue
        if bb4ac == 0:  # one intersection point p
            mu = -b / 2 * a
            p = x1 + mu * x
            # check if point is inside the segment
            # print 'p',p
            if np.inner(p - x1, p - x1) <= a:
                return True
        if bb4ac > 0:  # two intersection points p1 and p2
            mu = (-b + np.sqrt(bb4ac)) / (2 * a)
            p1 = x1 + mu * x
            mu = (-b - np.sqrt(bb4ac)) / (2 * a)
            p2 = x1 + mu * x
            # check if points are inside the line segment
            # print 'p1,p2',p1,p2
            if np.inner(p1 - x1, p1 - x1) <= a or np.inner(p2 - x1, p2 - x1) <= a:
                return True
    return False 
[docs]
def inside_sphere(xyz, center, radius):
    r"""If any point of the track is inside a sphere of a specified
    center and radius return True otherwise False.  Mathematically this
    can be simply described by $|x-c|\le r$ where $x$ a point $c$ the
    center of the sphere and $r$ the radius of the sphere.
    Parameters
    ----------
    xyz : array, shape (N,3)
       representing x,y,z of the N points of the track
    center : array, shape (3,)
       center of the sphere
    radius : float
       radius of the sphere
    Returns
    -------
    tf : {True,False}
        Whether point is inside sphere.
    Examples
    --------
    >>> from dipy.tracking.metrics import inside_sphere
    >>> line=np.array(([0,0,0],[1,1,1],[2,2,2]))
    >>> sph_cent=np.array([1,1,1])
    >>> sph_radius = 1
    >>> inside_sphere(line,sph_cent,sph_radius)
    True
    """
    return (np.sqrt(np.sum((xyz - center) ** 2, axis=1)) <= radius).any() 
[docs]
def inside_sphere_points(xyz, center, radius):
    r"""If a track intersects with a sphere of a specified center and
    radius return the points that are inside the sphere otherwise False.
    Mathematically this can be simply described by $|x-c| \le r$ where $x$
    a point $c$ the center of the sphere and $r$ the radius of the
    sphere.
    Parameters
    ----------
    xyz : array, shape (N,3)
       representing x,y,z of the N points of the track
    center : array, shape (3,)
       center of the sphere
    radius : float
       radius of the sphere
    Returns
    -------
    xyzn : array, shape(M,3)
       array representing x,y,z of the M points inside the sphere
    Examples
    --------
    >>> from dipy.tracking.metrics import inside_sphere_points
    >>> line=np.array(([0,0,0],[1,1,1],[2,2,2]))
    >>> sph_cent=np.array([1,1,1])
    >>> sph_radius = 1
    >>> inside_sphere_points(line,sph_cent,sph_radius)
    array([[1, 1, 1]])
    """
    return xyz[(np.sqrt(np.sum((xyz - center) ** 2, axis=1)) <= radius)] 
[docs]
@warning_for_keywords()
def spline(xyz, *, s=3, k=2, nest=-1):
    """Generate B-splines as documented in
    https://scipy-cookbook.readthedocs.io/items/Interpolation.html
    The scipy.interpolate packages wraps the netlib FITPACK routines
    (Dierckx) for calculating smoothing splines for various kinds of
    data and geometries. Although the data is evenly spaced in this
    example, it need not be so to use this routine.
    Parameters
    ----------
    xyz : array, shape (N,3)
        array representing x,y,z of N points in 3d space
    s : float, optional
        A smoothing condition.  The amount of smoothness is determined by
        satisfying the conditions: sum((w * (y - g))**2,axis=0) <= s
        where g(x) is the smoothed interpolation of (x,y).  The user can
        use s to control the tradeoff between closeness and smoothness of
        fit.  Larger satisfying the conditions: sum((w * (y -
        g))**2,axis=0) <= s where g(x) is the smoothed interpolation of
        (x,y).  The user can use s to control the tradeoff between
        closeness and smoothness of fit.  Larger s means more smoothing
        while smaller values of s indicate less smoothing. Recommended
        values of s depend on the weights, w.  If the weights represent
        the inverse of the standard-deviation of y, then a: good s value
        should be found in the range (m-sqrt(2*m),m+sqrt(2*m)) where m is
        the number of datapoints in x, y, and w.
    k : int, optional
        Degree of the spline.  Cubic splines are recommended.  Even
        values of k should be avoided especially with a small s-value.
        for the same set of data.  If task=-1 find the weighted least
        square spline for a given set of knots, t.
    nest : None or int, optional
        An over-estimate of the total number of knots of the spline to
        help in determining the storage space.  None results in value
        m+2*k. -1 results in m+k+1. Always large enough is nest=m+k+1.
        Default is -1.
    Returns
    -------
    xyzn : array, shape (M,3)
        array representing x,y,z of the M points inside the sphere
    Examples
    --------
    >>> import numpy as np
    >>> t=np.linspace(0,1.75*2*np.pi,100)# make ascending spiral in 3-space
    >>> x = np.sin(t)
    >>> y = np.cos(t)
    >>> z = t
    >>> x+= np.random.normal(scale=0.1, size=x.shape) # add noise
    >>> y+= np.random.normal(scale=0.1, size=y.shape)
    >>> z+= np.random.normal(scale=0.1, size=z.shape)
    >>> xyz=np.vstack((x,y,z)).T
    >>> xyzn=spline(xyz,s=3,k=2,nest=-1)
    >>> len(xyzn) > len(xyz)
    True
    See Also
    --------
    scipy.interpolate.splprep
    scipy.interpolate.splev
    """
    # find the knot points
    tckp, u = splprep([xyz[:, 0], xyz[:, 1], xyz[:, 2]], s=s, k=k, nest=nest)
    # evaluate spline, including interpolated points
    xnew, ynew, znew = splev(np.linspace(0, 1, 400), tckp)
    return np.vstack((xnew, ynew, znew)).T 
[docs]
def startpoint(xyz):
    """First point of the track
    Parameters
    ----------
    xyz : array, shape(N,3)
        Track.
    Returns
    -------
    sp : array, shape(3,)
        First track point.
    Examples
    --------
    >>> from dipy.tracking.metrics import startpoint
    >>> import numpy as np
    >>> theta=np.pi*np.linspace(0,1,100)
    >>> x=np.cos(theta)
    >>> y=np.sin(theta)
    >>> z=0*x
    >>> xyz=np.vstack((x,y,z)).T
    >>> sp=startpoint(xyz)
    >>> sp.any()==xyz[0].any()
    True
    """
    return xyz[0] 
[docs]
def endpoint(xyz):
    """
    Parameters
    ----------
    xyz : array, shape(N,3)
        Track.
    Returns
    -------
    ep : array, shape(3,)
        First track point.
    Examples
    --------
    >>> from dipy.tracking.metrics import endpoint
    >>> import numpy as np
    >>> theta=np.pi*np.linspace(0,1,100)
    >>> x=np.cos(theta)
    >>> y=np.sin(theta)
    >>> z=0*x
    >>> xyz=np.vstack((x,y,z)).T
    >>> ep=endpoint(xyz)
    >>> ep.any()==xyz[-1].any()
    True
    """
    return xyz[-1] 
[docs]
def arbitrarypoint(xyz, distance):
    """Select an arbitrary point along distance on the track (curve)
    Parameters
    ----------
    xyz : array-like shape (N,3)
       array representing x,y,z of N points in a track
    distance : float
        float representing distance travelled from the xyz[0] point of
        the curve along the curve.
    Returns
    -------
    ap : array shape (3,)
        Arbitrary point of line, such that, if the arbitrary point is not
        a point in `xyz`, then we take the interpolation between the two
        nearest `xyz` points.  If `xyz` is empty, return a ValueError
    Examples
    --------
    >>> import numpy as np
    >>> from dipy.tracking.metrics import arbitrarypoint, length
    >>> theta=np.pi*np.linspace(0,1,100)
    >>> x=np.cos(theta)
    >>> y=np.sin(theta)
    >>> z=0*x
    >>> xyz=np.vstack((x,y,z)).T
    >>> ap=arbitrarypoint(xyz,length(xyz)/3)
    """
    xyz = np.asarray(xyz)
    n_pts = xyz.shape[0]
    if n_pts == 0:
        raise ValueError("xyz array cannot be empty")
    if n_pts == 1:
        return xyz.copy().squeeze()
    cumlen = np.zeros(n_pts)
    cumlen[1:] = length(xyz, along=True)
    if cumlen[-1] < distance:
        raise ValueError("Given distance is bigger than the length of the curve")
    ind = np.where((cumlen - distance) > 0)[0][0]
    len0 = cumlen[ind - 1]
    len1 = cumlen[ind]
    Ds = distance - len0
    Lambda = Ds / (len1 - len0)
    return Lambda * xyz[ind] + (1 - Lambda) * xyz[ind - 1] 
def _extrap(xyz, cumlen, distance):
    """Helper function for extrapolate"""
    ind = np.where((cumlen - distance) > 0)[0][0]
    len0 = cumlen[ind - 1]
    len1 = cumlen[ind]
    Ds = distance - len0
    Lambda = Ds / (len1 - len0)
    return Lambda * xyz[ind] + (1 - Lambda) * xyz[ind - 1]
[docs]
def principal_components(xyz):
    """We use PCA to calculate the 3 principal directions for a track
    Parameters
    ----------
    xyz : array-like shape (N,3)
       array representing x,y,z of N points in a track
    Returns
    -------
    va : array_like
        eigenvalues
    ve : array_like
        eigenvectors
    Examples
    --------
    >>> import numpy as np
    >>> from dipy.tracking.metrics import principal_components
    >>> theta=np.pi*np.linspace(0,1,100)
    >>> x=np.cos(theta)
    >>> y=np.sin(theta)
    >>> z=0*x
    >>> xyz=np.vstack((x,y,z)).T
    >>> va, ve = principal_components(xyz)
    >>> np.allclose(va, [0.51010101, 0.09883545, 0])
    True
    """
    C = np.cov(xyz.T)
    va, ve = np.linalg.eig(C)
    return va, ve 
[docs]
def midpoint2point(xyz, p):
    """Calculate distance from midpoint of a curve to arbitrary point p
    Parameters
    ----------
    xyz : array-like shape (N,3)
       array representing x,y,z of N points in a track
    p : array shape (3,)
       array representing an arbitrary point with x,y,z coordinates in
       space.
    Returns
    -------
    d : float
       a float number representing Euclidean distance
    Examples
    --------
    >>> import numpy as np
    >>> from dipy.tracking.metrics import midpoint2point, midpoint
    >>> theta=np.pi*np.linspace(0,1,100)
    >>> x=np.cos(theta)
    >>> y=np.sin(theta)
    >>> z=0*x
    >>> xyz=np.vstack((x,y,z)).T
    >>> dist=midpoint2point(xyz,np.array([0,0,0]))
    """
    mid = midpoint(xyz)
    return np.sqrt(np.sum((xyz - mid) ** 2))