from ast import literal_eval
import logging
import os.path
from warnings import warn
import nibabel as nib
import numpy as np
from dipy.core.gradients import gradient_table, mask_non_weighted_bvals
from dipy.core.ndindex import ndindex
from dipy.data import default_sphere, get_sphere
from dipy.direction.peaks import peak_directions, peaks_from_model
from dipy.io.gradients import read_bvals_bvecs
from dipy.io.image import load_nifti, load_nifti_data, save_nifti
from dipy.io.peaks import niftis_to_pam, pam_to_niftis, save_pam, tensor_to_pam
from dipy.io.utils import nifti1_symmat
from dipy.reconst import mapmri
from dipy.reconst.csdeconv import ConstrainedSphericalDeconvModel, auto_response_ssst
from dipy.reconst.dki import DiffusionKurtosisModel, split_dki_param
from dipy.reconst.dsi import DiffusionSpectrumModel
from dipy.reconst.dti import (
    TensorModel,
    axial_diffusivity,
    color_fa,
    fractional_anisotropy,
    geodesic_anisotropy,
    lower_triangular,
    mean_diffusivity,
    mode as get_mode,
    radial_diffusivity,
)
from dipy.reconst.ivim import IvimModel
from dipy.reconst.rumba import RumbaSDModel
from dipy.reconst.shm import CsaOdfModel
from dipy.testing.decorators import warning_for_keywords
from dipy.utils.deprecator import deprecated_params
from dipy.workflows.workflow import Workflow
[docs]
class ReconstMAPMRIFlow(Workflow):
[docs]
    @classmethod
    def get_short_name(cls):
        return "mapmri" 
[docs]
    def run(
        self,
        data_files,
        bvals_files,
        bvecs_files,
        small_delta,
        big_delta,
        b0_threshold=50.0,
        laplacian=True,
        positivity=True,
        bval_threshold=2000,
        save_metrics=(),
        laplacian_weighting=0.05,
        radial_order=6,
        sphere_name=None,
        relative_peak_threshold=0.5,
        min_separation_angle=25,
        npeaks=5,
        normalize_peaks=False,
        extract_pam_values=False,
        out_dir="",
        out_rtop="rtop.nii.gz",
        out_lapnorm="lapnorm.nii.gz",
        out_msd="msd.nii.gz",
        out_qiv="qiv.nii.gz",
        out_rtap="rtap.nii.gz",
        out_rtpp="rtpp.nii.gz",
        out_ng="ng.nii.gz",
        out_perng="perng.nii.gz",
        out_parng="parng.nii.gz",
        out_pam="mapmri_peaks.pam5",
        out_peaks_dir="mapmri_peaks_dirs.nii.gz",
        out_peaks_values="mapmri_peaks_values.nii.gz",
        out_peaks_indices="mapmri_peaks_indices.nii.gz",
    ):
        """Workflow for fitting the MAPMRI model (with optional Laplacian
        regularization). Generates rtop, lapnorm, msd, qiv, rtap, rtpp,
        non-gaussian (ng), parallel ng, perpendicular ng saved in a nifti
        format in input files provided by `data_files` and saves the nifti
        files to an output directory specified by `out_dir`.
        In order for the MAPMRI workflow to work in the way
        intended either the Laplacian or positivity or both must
        be set to True.
        Parameters
        ----------
        data_files : string
            Path to the input volume.
        bvals_files : string
            Path to the bval files.
        bvecs_files : string
            Path to the bvec files.
        small_delta : float
            Small delta value used in generation of gradient table of provided
            bval and bvec.
        big_delta : float
            Big delta value used in generation of gradient table of provided
            bval and bvec.
        b0_threshold : float, optional
            Threshold used to find b0 volumes.
        laplacian : bool, optional
            Regularize using the Laplacian of the MAP-MRI basis.
        positivity : bool, optional
            Constrain the propagator to be positive.
        bval_threshold : float, optional
            Sets the b-value threshold to be used in the scale factor
            estimation. In order for the estimated non-Gaussianity to have
            meaning this value should set to a lower value (b<2000 s/mm^2)
            such that the scale factors are estimated on signal points that
            reasonably represent the spins at Gaussian diffusion.
        save_metrics : variable string, optional
            List of metrics to save.
            Possible values: rtop, laplacian_signal, msd, qiv, rtap, rtpp,
            ng, perng, parng
        laplacian_weighting : float, optional
            Weighting value used in fitting the MAPMRI model in the Laplacian
            and both model types.
        radial_order : unsigned int, optional
            Even value used to set the order of the basis.
        sphere_name : string, optional
            Sphere name on which to reconstruct the fODFs.
        relative_peak_threshold : float, optional
            Only return peaks greater than ``relative_peak_threshold * m``
            where m is the largest peak.
        min_separation_angle : float, optional
            The minimum distance between directions. If two peaks are too close
            only the larger of the two is returned.
        npeaks : int, optional
            Maximum number of peaks found.
        normalize_peaks : bool, optional
            If true, all peak values are calculated relative to `max(odf)`.
        extract_pam_values : bool, optional
            Save or not to save pam volumes as single nifti files.
        out_dir : string, optional
            Output directory. (default: current directory)
        out_rtop : string, optional
            Name of the rtop to be saved.
        out_lapnorm : string, optional
            Name of the norm of Laplacian signal to be saved.
        out_msd : string, optional
            Name of the msd to be saved.
        out_qiv : string, optional
            Name of the qiv to be saved.
        out_rtap : string, optional
            Name of the rtap to be saved.
        out_rtpp : string, optional
            Name of the rtpp to be saved.
        out_ng : string, optional
            Name of the Non-Gaussianity to be saved.
        out_perng :  string, optional
            Name of the Non-Gaussianity perpendicular to be saved.
        out_parng : string, optional
            Name of the Non-Gaussianity parallel to be saved.
        out_pam : string, optional
            Name of the peaks volume to be saved.
        out_peaks_dir : string, optional
            Name of the peaks directions volume to be saved.
        out_peaks_values : string, optional
            Name of the peaks values volume to be saved.
        out_peaks_indices : string, optional
            Name of the peaks indices volume to be saved.
        """
        io_it = self.get_io_iterator()
        for (
            dwi,
            bval,
            bvec,
            out_rtop,
            out_lapnorm,
            out_msd,
            out_qiv,
            out_rtap,
            out_rtpp,
            out_ng,
            out_perng,
            out_parng,
            opam,
            opeaks_dir,
            opeaks_values,
            opeaks_indices,
        ) in io_it:
            logging.info(f"Computing MAPMRI metrics for {dwi}")
            data, affine = load_nifti(dwi)
            bvals, bvecs = read_bvals_bvecs(bval, bvec)
            # If all b-values are smaller or equal to the b0 threshold, it is
            # assumed that no thresholding is requested
            if any(mask_non_weighted_bvals(bvals, b0_threshold)):
                if b0_threshold < bvals.min():
                    warn(
                        f"b0_threshold (value: {b0_threshold}) is too low, "
                        "increase your b0_threshold. It should be higher than the "
                        f"first b0 value ({bvals.min()}).",
                        stacklevel=2,
                    )
            gtab = gradient_table(
                bvals=bvals,
                bvecs=bvecs,
                small_delta=small_delta,
                big_delta=big_delta,
                b0_threshold=b0_threshold,
            )
            if not save_metrics:
                save_metrics = [
                    "rtop",
                    "laplacian_signal",
                    "msd",
                    "qiv",
                    "rtap",
                    "rtpp",
                    "ng",
                    "perng",
                    "parng",
                ]
            kwargs = {
                "laplacian_regularization": laplacian,
                "positivity_constraint": positivity,
            }
            map_model_aniso = mapmri.MapmriModel(
                gtab,
                radial_order=radial_order,
                laplacian_weighting=laplacian_weighting,
                bval_threshold=bval_threshold,
                **kwargs,
            )
            mapfit_aniso = map_model_aniso.fit(data)
            for name, fname, func in [
                ("rtop", out_rtop, mapfit_aniso.rtop),
                (
                    "laplacian_signal",
                    out_lapnorm,
                    mapfit_aniso.norm_of_laplacian_signal,
                ),
                ("msd", out_msd, mapfit_aniso.msd),
                ("qiv", out_qiv, mapfit_aniso.qiv),
                ("rtap", out_rtap, mapfit_aniso.rtap),
                ("rtpp", out_rtpp, mapfit_aniso.rtpp),
                ("ng", out_ng, mapfit_aniso.ng),
                ("perng", out_perng, mapfit_aniso.ng_perpendicular),
                ("parng", out_parng, mapfit_aniso.ng_parallel),
            ]:
                if name in save_metrics:
                    r = func()
                    save_nifti(fname, r.astype(np.float32), affine)
            logging.info(f"MAPMRI saved in {os.path.abspath(out_dir)}")
            sphere = default_sphere
            if sphere_name:
                sphere = get_sphere(sphere_name)
            shape = data.shape[:-1]
            peak_dirs = np.zeros((shape + (npeaks, 3)))
            peak_values = np.zeros((shape + (npeaks,)))
            peak_indices = np.zeros((shape + (npeaks,)), dtype=np.int32)
            peak_indices.fill(-1)
            odf = mapfit_aniso.odf(sphere)
            for idx in ndindex(shape):
                # Get peaks of odf
                direction, pk, ind = peak_directions(
                    odf[idx],
                    sphere,
                    relative_peak_threshold=relative_peak_threshold,
                    min_separation_angle=min_separation_angle,
                )
                # Calculate peak metrics
                if pk.shape[0] != 0:
                    n = min(npeaks, pk.shape[0])
                    peak_dirs[idx][:n] = direction[:n]
                    peak_indices[idx][:n] = ind[:n]
                    peak_values[idx][:n] = pk[:n]
                    if normalize_peaks:
                        peak_values[idx][:n] /= pk[0]
                        peak_dirs[idx] *= peak_values[idx][:, None]
            pam = niftis_to_pam(
                affine, peak_dirs, peak_values, peak_indices, odf=odf, sphere=sphere
            )
            save_pam(opam, pam)
            if extract_pam_values:
                pam_to_niftis(
                    pam,
                    fname_peaks_dir=opeaks_dir,
                    fname_peaks_values=opeaks_values,
                    fname_peaks_indices=opeaks_indices,
                    reshape_dirs=True,
                ) 
 
[docs]
class ReconstDtiFlow(Workflow):
[docs]
    @classmethod
    def get_short_name(cls):
        return "dti" 
[docs]
    def run(
        self,
        input_files,
        bvalues_files,
        bvectors_files,
        mask_files,
        fit_method="WLS",
        b0_threshold=50,
        bvecs_tol=0.01,
        npeaks=1,
        sigma=None,
        save_metrics=None,
        nifti_tensor=True,
        extract_pam_values=False,
        out_dir="",
        out_tensor="tensors.nii.gz",
        out_fa="fa.nii.gz",
        out_ga="ga.nii.gz",
        out_rgb="rgb.nii.gz",
        out_md="md.nii.gz",
        out_ad="ad.nii.gz",
        out_rd="rd.nii.gz",
        out_mode="mode.nii.gz",
        out_evec="evecs.nii.gz",
        out_eval="evals.nii.gz",
        out_pam="peaks.pam5",
        out_peaks_dir="peaks_dirs.nii.gz",
        out_peaks_values="peaks_values.nii.gz",
        out_peaks_indices="peaks_indices.nii.gz",
        out_sphere="sphere.txt",
        out_qa="qa.nii.gz",
    ):
        """Workflow for tensor reconstruction and for computing DTI metrics
        using Weighted  Least-Squares.
        Performs a tensor reconstruction :footcite:p:`Basser1994b`,
        :footcite:p:`Basser1996` on the files by 'globing' ``input_files`` and
        saves the DTI metrics in a directory specified by ``out_dir``.
        Parameters
        ----------
        input_files : string
            Path to the input volumes. This path may contain wildcards to
            process multiple inputs at once.
        bvalues_files : string
            Path to the bvalues files. This path may contain wildcards to use
            multiple bvalues files at once.
        bvectors_files : string
            Path to the bvectors files. This path may contain wildcards to use
            multiple bvectors files at once.
        mask_files : string
            Path to the input masks. This path may contain wildcards to use
            multiple masks at once.
        fit_method : string, optional
            can be one of the following:
            'WLS' for weighted least squares :footcite:p:`Chung2006`
            'LS' or 'OLS' for ordinary least squares :footcite:p:`Chung2006`
            'NLLS' for non-linear least-squares
            'RT' or 'restore' or 'RESTORE' for RESTORE robust tensor fitting
            :footcite:p:`Chang2005`.
        b0_threshold : float, optional
            Threshold used to find b0 volumes.
        bvecs_tol : float, optional
            Threshold used to check that norm(bvec) = 1 +/- bvecs_tol
        npeaks : int, optional
            Number of peaks/eigen vectors to save in each voxel. DTI generates
            3 eigen values and eigen vectors. The principal eigenvector is
            saved by default.
        sigma : float, optional
            An estimate of the variance. :footcite:t:`Chang2005` recommend to
            use 1.5267 * std(background_noise), where background_noise is
            estimated from some part of the image known to contain no signal
            (only noise) b-vectors are unit vectors.
        save_metrics : variable string, optional
            List of metrics to save.
            Possible values: fa, ga, rgb, md, ad, rd, mode, tensor, evec, eval
        nifti_tensor : bool, optional
            Whether the tensor is saved in the standard Nifti format or in an
            alternate format that is used by other software (e.g., FSL): a
            4-dimensional volume (shape (i, j, k, 6)) with
            Dxx, Dxy, Dxz, Dyy, Dyz, Dzz on the last dimension.
        extract_pam_values : bool, optional
            Save or not to save pam volumes as single nifti files.
        out_dir : string, optional
            Output directory. (default current directory)
        out_tensor : string, optional
            Name of the tensors volume to be saved.
            Per default, this will be saved following the nifti standard:
            with the tensor elements as Dxx, Dxy, Dyy, Dxz, Dyz, Dzz on the
            last (5th) dimension of the volume (shape: (i, j, k, 1, 6)). If
            `nifti_tensor` is False, this will be saved in an alternate format
            that is used by other software (e.g., FSL): a
            4-dimensional volume (shape (i, j, k, 6)) with Dxx, Dxy, Dxz, Dyy,
            Dyz, Dzz on the last dimension.
        out_fa : string, optional
            Name of the fractional anisotropy volume to be saved.
        out_ga : string, optional
            Name of the geodesic anisotropy volume to be saved.
        out_rgb : string, optional
            Name of the color fa volume to be saved.
        out_md : string, optional
            Name of the mean diffusivity volume to be saved.
        out_ad : string, optional
            Name of the axial diffusivity volume to be saved.
        out_rd : string, optional
            Name of the radial diffusivity volume to be saved.
        out_mode : string, optional
            Name of the mode volume to be saved.
        out_evec : string, optional
            Name of the eigenvectors volume to be saved.
        out_eval : string, optional
            Name of the eigenvalues to be saved.
        out_pam : string, optional
            Name of the peaks volume to be saved.
        out_peaks_dir : string, optional
            Name of the peaks directions volume to be saved.
        out_peaks_values : string, optional
            Name of the peaks values volume to be saved.
        out_peaks_indices : string, optional
            Name of the peaks indices volume to be saved.
        out_sphere : string, optional
            Sphere vertices name to be saved.
        out_qa : string, optional
            Name of the Quantitative Anisotropy to be saved.
        References
        ----------
        .. footbibliography::
        """
        save_metrics = save_metrics or []
        io_it = self.get_io_iterator()
        for (
            dwi,
            bval,
            bvec,
            mask,
            otensor,
            ofa,
            oga,
            orgb,
            omd,
            oad,
            orad,
            omode,
            oevecs,
            oevals,
            opam,
            opeaks_dir,
            opeaks_values,
            opeaks_indices,
            osphere,
            oqa,
        ) in io_it:
            logging.info(f"Computing DTI metrics for {dwi}")
            data, affine = load_nifti(dwi)
            if mask is not None:
                mask = load_nifti_data(mask).astype(bool)
            optional_args = {}
            if fit_method in ["RT", "restore", "RESTORE", "NLLS"]:
                optional_args["sigma"] = sigma
            tenfit, tenmodel, _ = self.get_fitted_tensor(
                data,
                mask,
                bval,
                bvec,
                b0_threshold=b0_threshold,
                bvecs_tol=bvecs_tol,
                fit_method=fit_method,
                optional_args=optional_args,
            )
            if not save_metrics:
                save_metrics = [
                    "fa",
                    "md",
                    "rd",
                    "ad",
                    "ga",
                    "rgb",
                    "mode",
                    "evec",
                    "eval",
                    "tensor",
                ]
            FA = fractional_anisotropy(tenfit.evals)
            FA[np.isnan(FA)] = 0
            FA = np.clip(FA, 0, 1)
            if "tensor" in save_metrics:
                tensor_vals = lower_triangular(tenfit.quadratic_form)
                if nifti_tensor:
                    ten_img = nifti1_symmat(tensor_vals, affine=affine)
                else:
                    alt_order = [0, 1, 3, 2, 4, 5]
                    ten_img = nib.Nifti1Image(
                        tensor_vals[..., alt_order].astype(np.float32), affine
                    )
                nib.save(ten_img, otensor)
            if "fa" in save_metrics:
                save_nifti(ofa, FA.astype(np.float32), affine)
            if "ga" in save_metrics:
                GA = geodesic_anisotropy(tenfit.evals)
                save_nifti(oga, GA.astype(np.float32), affine)
            if "rgb" in save_metrics:
                RGB = color_fa(FA, tenfit.evecs)
                save_nifti(orgb, np.array(255 * RGB, "uint8"), affine)
            if "md" in save_metrics:
                MD = mean_diffusivity(tenfit.evals)
                save_nifti(omd, MD.astype(np.float32), affine)
            if "ad" in save_metrics:
                AD = axial_diffusivity(tenfit.evals)
                save_nifti(oad, AD.astype(np.float32), affine)
            if "rd" in save_metrics:
                RD = radial_diffusivity(tenfit.evals)
                save_nifti(orad, RD.astype(np.float32), affine)
            if "mode" in save_metrics:
                MODE = get_mode(tenfit.quadratic_form)
                save_nifti(omode, MODE.astype(np.float32), affine)
            if "evec" in save_metrics:
                save_nifti(oevecs, tenfit.evecs.astype(np.float32), affine)
            if "eval" in save_metrics:
                save_nifti(oevals, tenfit.evals.astype(np.float32), affine)
            if save_metrics:
                msg = f"DTI metrics saved to {os.path.abspath(out_dir)}"
                logging.info(msg)
                for metric in save_metrics:
                    logging.info(self.last_generated_outputs[f"out_{metric}"])
            pam = tensor_to_pam(
                tenfit.evals.astype(np.float32),
                tenfit.evecs.astype(np.float32),
                affine,
                sphere=default_sphere,
                generate_peaks_indices=False,
                npeaks=npeaks,
            )
            save_pam(opam, pam)
            if extract_pam_values:
                pam_to_niftis(
                    pam,
                    fname_peaks_dir=opeaks_dir,
                    fname_peaks_values=opeaks_values,
                    fname_peaks_indices=opeaks_indices,
                    fname_sphere=osphere,
                    fname_qa=oqa,
                    reshape_dirs=True,
                ) 
[docs]
    def get_fitted_tensor(
        self,
        data,
        mask,
        bval,
        bvec,
        b0_threshold=50,
        bvecs_tol=0.01,
        fit_method="WLS",
        optional_args=None,
    ):
        logging.info("Tensor estimation...")
        bvals, bvecs = read_bvals_bvecs(bval, bvec)
        gtab = gradient_table(
            bvals, bvecs=bvecs, b0_threshold=b0_threshold, atol=bvecs_tol
        )
        tenmodel = TensorModel(gtab, fit_method=fit_method, **optional_args)
        tenfit = tenmodel.fit(data, mask=mask)
        return tenfit, tenmodel, gtab 
 
[docs]
class ReconstDsiFlow(Workflow):
[docs]
    @classmethod
    def get_short_name(cls):
        return "dsi" 
[docs]
    def run(
        self,
        input_files,
        bvalues_files,
        bvectors_files,
        mask_files,
        qgrid_size=17,
        r_start=2.1,
        r_end=6.0,
        r_step=0.2,
        filter_width=32,
        normalize_peaks=False,
        sphere_name=None,
        relative_peak_threshold=0.5,
        min_separation_angle=25,
        sh_order_max=8,
        extract_pam_values=False,
        parallel=False,
        num_processes=None,
        out_dir="",
        out_pam="peaks.pam5",
        out_shm="shm.nii.gz",
        out_peaks_dir="peaks_dirs.nii.gz",
        out_peaks_values="peaks_values.nii.gz",
        out_peaks_indices="peaks_indices.nii.gz",
        out_gfa="gfa.nii.gz",
        out_sphere="sphere.txt",
        out_b="B.nii.gz",
        out_qa="qa.nii.gz",
    ):
        """Diffusion Spectrum Imaging (DSI) reconstruction workflow.
        Parameters
        ----------
        input_files : string
            Path to the input volumes. This path may contain wildcards to
            process multiple inputs at once.
        bvalues_files : string
            Path to the bvalues files. This path may contain wildcards to use
            multiple bvalues files at once.
        bvectors_files : string
            Path to the bvectors files. This path may contain wildcards to use
            multiple bvectors files at once.
        mask_files : string
            Path to the input masks. This path may contain wildcards to use
            multiple masks at once.
        qgrid_size : int, optional
            has to be an odd number. Sets the size of the q_space grid.
            For example if qgrid_size is 17 then the shape of the grid will be
            ``(17, 17, 17)``.
        r_start : float, optional
            ODF is sampled radially in the PDF. This parameters shows where the
            sampling should start.
        r_end : float, optional
            Radial endpoint of ODF sampling
        r_step : float, optional
            Step size of the ODf sampling from r_start to r_end
        filter_width : float, optional
            Strength of the hanning filter
        normalize_peaks : bool, optional
            Whether to normalize the peaks
        sphere_name : string, optional
            Sphere name on which to reconstruct the fODFs.
        relative_peak_threshold : float, optional
            Only return peaks greater than ``relative_peak_threshold * m``
            where m is the largest peak.
        min_separation_angle : float, optional
            The minimum distance between directions. If two peaks are too close
            only the larger of the two is returned.
        sh_order_max : int, optional
            Spherical harmonics order (l) used in the DKI fit.
        extract_pam_values : bool, optional
            Save or not to save pam volumes as single nifti files.
        parallel : bool, optional
            Whether to use parallelization in peak-finding during the
            calibration procedure.
        num_processes : int, optional
            If `parallel` is True, the number of subprocesses to use
            (default multiprocessing.cpu_count()). If < 0 the maximal number
            of cores minus ``num_processes + 1`` is used (enter -1 to use as
            many cores as possible). 0 raises an error.
        out_dir : string, optional
            Output directory. (default current directory)
        out_pam : string, optional
            Name of the peaks volume to be saved.
        out_shm : string, optional
            Name of the spherical harmonics volume to be saved.
        out_peaks_dir : string, optional
            Name of the peaks directions volume to be saved.
        out_peaks_values : string, optional
            Name of the peaks values volume to be saved.
        out_peaks_indices : string, optional
            Name of the peaks indices volume to be saved.
        out_gfa : string, optional
            Name of the generalized FA volume to be saved.
        out_sphere : string, optional
            Sphere vertices name to be saved.
        out_b : string, optional
            Name of the B Matrix to be saved.
        out_qa : string, optional
            Name of the Quantitative Anisotropy to be saved.
        """
        io_it = self.get_io_iterator()
        for (
            dwi,
            bval,
            bvec,
            mask,
            opam,
            oshm,
            opeaks_dir,
            opeaks_values,
            opeaks_indices,
            ogfa,
            osphere,
            ob,
            oqa,
        ) in io_it:
            logging.info(f"Computing DSI Model for {dwi}")
            data, affine = load_nifti(dwi)
            bvals, bvecs = read_bvals_bvecs(bval, bvec)
            gtab = gradient_table(bvals, bvecs=bvecs)
            mask = load_nifti_data(mask).astype(bool)
            dsi_model = DiffusionSpectrumModel(
                gtab,
                qgrid_size=qgrid_size,
                r_start=r_start,
                r_end=r_end,
                r_step=r_step,
                filter_width=filter_width,
                normalize_peaks=normalize_peaks,
            )
            peaks_sphere = default_sphere
            if sphere_name is not None:
                peaks_sphere = get_sphere(name=sphere_name)
            peaks_dsi = peaks_from_model(
                model=dsi_model,
                data=data,
                sphere=peaks_sphere,
                relative_peak_threshold=relative_peak_threshold,
                min_separation_angle=min_separation_angle,
                mask=mask,
                return_sh=True,
                sh_order_max=sh_order_max,
                normalize_peaks=normalize_peaks,
                parallel=parallel,
                num_processes=num_processes,
            )
            peaks_dsi.affine = affine
            save_pam(opam, peaks_dsi)
            logging.info("DSI computation completed.")
            if extract_pam_values:
                pam_to_niftis(
                    peaks_dsi,
                    fname_shm=oshm,
                    fname_peaks_dir=opeaks_dir,
                    fname_peaks_values=opeaks_values,
                    fname_peaks_indices=opeaks_indices,
                    fname_gfa=ogfa,
                    fname_sphere=osphere,
                    fname_b=ob,
                    fname_qa=oqa,
                    reshape_dirs=True,
                )
            logging.info(f"DSI metrics saved to {os.path.abspath(out_dir)}") 
 
[docs]
class ReconstCSDFlow(Workflow):
[docs]
    @classmethod
    def get_short_name(cls):
        return "csd" 
[docs]
    def run(
        self,
        input_files,
        bvalues_files,
        bvectors_files,
        mask_files,
        b0_threshold=50.0,
        bvecs_tol=0.01,
        roi_center=None,
        roi_radii=10,
        fa_thr=0.7,
        frf=None,
        sphere_name=None,
        relative_peak_threshold=0.5,
        min_separation_angle=25,
        sh_order_max=8,
        parallel=False,
        extract_pam_values=False,
        num_processes=None,
        out_dir="",
        out_pam="peaks.pam5",
        out_shm="shm.nii.gz",
        out_peaks_dir="peaks_dirs.nii.gz",
        out_peaks_values="peaks_values.nii.gz",
        out_peaks_indices="peaks_indices.nii.gz",
        out_gfa="gfa.nii.gz",
        out_sphere="sphere.txt",
        out_b="B.nii.gz",
        out_qa="qa.nii.gz",
    ):
        """Constrained spherical deconvolution.
        See :footcite:p:`Tournier2007` for further details about the method.
        Parameters
        ----------
        input_files : string
            Path to the input volumes. This path may contain wildcards to
            process multiple inputs at once.
        bvalues_files : string
            Path to the bvalues files. This path may contain wildcards to use
            multiple bvalues files at once.
        bvectors_files : string
            Path to the bvectors files. This path may contain wildcards to use
            multiple bvectors files at once.
        mask_files : string
            Path to the input masks. This path may contain wildcards to use
            multiple masks at once. (default: No mask used)
        b0_threshold : float, optional
            Threshold used to find b0 volumes.
        bvecs_tol : float, optional
            Bvecs should be unit vectors.
        roi_center : variable int, optional
            Center of ROI in data. If center is None, it is assumed that it is
            the center of the volume with shape `data.shape[:3]`.
        roi_radii : int or array-like, optional
            radii of cuboid ROI in voxels.
        fa_thr : float, optional
            FA threshold for calculating the response function.
        frf : variable float, optional
            Fiber response function can be for example inputted as 15 4 4
            (from the command line) or [15, 4, 4] from a Python script to be
            converted to float and multiplied by 10**-4 . If None
            the fiber response function will be computed automatically.
        sphere_name : string, optional
            Sphere name on which to reconstruct the fODFs.
        relative_peak_threshold : float, optional
            Only return peaks greater than ``relative_peak_threshold * m``
            where m is the largest peak.
        min_separation_angle : float, optional
            The minimum distance between directions. If two peaks are too close
            only the larger of the two is returned.
        sh_order_max : int, optional
            Spherical harmonics order (l) used in the CSA fit.
        parallel : bool, optional
            Whether to use parallelization in peak-finding during the
            calibration procedure.
        extract_pam_values : bool, optional
            Save or not to save pam volumes as single nifti files.
        num_processes : int, optional
            If `parallel` is True, the number of subprocesses to use
            (default multiprocessing.cpu_count()). If < 0 the maximal number
            of cores minus ``num_processes + 1`` is used (enter -1 to use as
            many cores as possible). 0 raises an error.
        out_dir : string, optional
            Output directory. (default current directory)
        out_pam : string, optional
            Name of the peaks volume to be saved.
        out_shm : string, optional
            Name of the spherical harmonics volume to be saved.
        out_peaks_dir : string, optional
            Name of the peaks directions volume to be saved.
        out_peaks_values : string, optional
            Name of the peaks values volume to be saved.
        out_peaks_indices : string, optional
            Name of the peaks indices volume to be saved.
        out_gfa : string, optional
            Name of the generalized FA volume to be saved.
        out_sphere : string, optional
            Sphere vertices name to be saved.
        out_b : string, optional
            Name of the B Matrix to be saved.
        out_qa : string, optional
            Name of the Quantitative Anisotropy to be saved.
        References
        ----------
        .. footbibliography::
        """
        io_it = self.get_io_iterator()
        for (
            dwi,
            bval,
            bvec,
            maskfile,
            opam,
            oshm,
            opeaks_dir,
            opeaks_values,
            opeaks_indices,
            ogfa,
            osphere,
            ob,
            oqa,
        ) in io_it:
            logging.info(f"Loading {dwi}")
            data, affine = load_nifti(dwi)
            bvals, bvecs = read_bvals_bvecs(bval, bvec)
            # If all b-values are smaller or equal to the b0 threshold, it is
            # assumed that no thresholding is requested
            if any(mask_non_weighted_bvals(bvals, b0_threshold)):
                if b0_threshold < bvals.min():
                    warn(
                        f"b0_threshold (value: {b0_threshold}) is too low, "
                        "increase your b0_threshold. It should be higher than the "
                        f"first b0 value ({bvals.min()}).",
                        stacklevel=2,
                    )
            gtab = gradient_table(
                bvals, bvecs=bvecs, b0_threshold=b0_threshold, atol=bvecs_tol
            )
            mask_vol = load_nifti_data(maskfile).astype(bool)
            n_params = ((sh_order_max + 1) * (sh_order_max + 2)) / 2
            if data.shape[-1] < n_params:
                raise ValueError(
                    f"You need at least {n_params} unique DWI volumes to "
                    f"compute fiber odfs. You currently have: {data.shape[-1]}"
                    " DWI volumes."
                )
            if frf is None:
                logging.info("Computing response function")
                if roi_center is not None:
                    logging.info(f"Response ROI center:\n{roi_center}")
                    logging.info(f"Response ROI radii:\n{roi_radii}")
                response, ratio = auto_response_ssst(
                    gtab,
                    data,
                    roi_center=roi_center,
                    roi_radii=roi_radii,
                    fa_thr=fa_thr,
                )
                response = list(response)
            else:
                logging.info("Using response function")
                if isinstance(frf, str):
                    l01 = np.array(literal_eval(frf), dtype=np.float64)
                else:
                    l01 = np.array(frf, dtype=np.float64)
                l01 *= 10**-4
                response = np.array([l01[0], l01[1], l01[1]])
                ratio = l01[1] / l01[0]
                response = (response, ratio)
            logging.info(
                f"Eigenvalues for the frf of the input data are :{response[0]}"
            )
            logging.info(f"Ratio for smallest to largest eigen value is {ratio}")
            peaks_sphere = default_sphere
            if sphere_name is not None:
                peaks_sphere = get_sphere(name=sphere_name)
            logging.info("CSD computation started.")
            csd_model = ConstrainedSphericalDeconvModel(
                gtab, response, sh_order_max=sh_order_max
            )
            peaks_csd = peaks_from_model(
                model=csd_model,
                data=data,
                sphere=peaks_sphere,
                relative_peak_threshold=relative_peak_threshold,
                min_separation_angle=min_separation_angle,
                mask=mask_vol,
                return_sh=True,
                sh_order_max=sh_order_max,
                normalize_peaks=True,
                parallel=parallel,
                num_processes=num_processes,
            )
            peaks_csd.affine = affine
            save_pam(opam, peaks_csd)
            logging.info("CSD computation completed.")
            if extract_pam_values:
                pam_to_niftis(
                    peaks_csd,
                    fname_shm=oshm,
                    fname_peaks_dir=opeaks_dir,
                    fname_peaks_values=opeaks_values,
                    fname_peaks_indices=opeaks_indices,
                    fname_gfa=ogfa,
                    fname_sphere=osphere,
                    fname_b=ob,
                    fname_qa=oqa,
                    reshape_dirs=True,
                )
            dname_ = os.path.dirname(opam)
            if dname_ == "":
                logging.info("Pam5 file saved in current directory")
            else:
                logging.info(f"Pam5 file saved in {dname_}")
            return io_it 
 
[docs]
class ReconstCSAFlow(Workflow):
[docs]
    @classmethod
    def get_short_name(cls):
        return "csa" 
[docs]
    @deprecated_params("sh_order", new_name="sh_order_max", since="1.9", until="2.0")
    def run(
        self,
        input_files,
        bvalues_files,
        bvectors_files,
        mask_files,
        b0_threshold=50.0,
        bvecs_tol=0.01,
        sphere_name=None,
        relative_peak_threshold=0.5,
        min_separation_angle=25,
        sh_order_max=8,
        parallel=False,
        extract_pam_values=False,
        num_processes=None,
        out_dir="",
        out_pam="peaks.pam5",
        out_shm="shm.nii.gz",
        out_peaks_dir="peaks_dirs.nii.gz",
        out_peaks_values="peaks_values.nii.gz",
        out_peaks_indices="peaks_indices.nii.gz",
        out_sphere="sphere.txt",
        out_gfa="gfa.nii.gz",
        out_b="B.nii.gz",
        out_qa="qa.nii.gz",
    ):
        """Constant Solid Angle.
        See :footcite:p:`Aganj2009` for further details about the method.
        Parameters
        ----------
        input_files : string
            Path to the input volumes. This path may contain wildcards to
            process multiple inputs at once.
        bvalues_files : string
            Path to the bvalues files. This path may contain wildcards to use
            multiple bvalues files at once.
        bvectors_files : string
            Path to the bvectors files. This path may contain wildcards to use
            multiple bvectors files at once.
        mask_files : string
            Path to the input masks. This path may contain wildcards to use
            multiple masks at once. (default: No mask used)
        b0_threshold : float, optional
            Threshold used to find b0 volumes.
        bvecs_tol : float, optional
            Threshold used so that norm(bvec)=1.
        sphere_name : string, optional
            Sphere name on which to reconstruct the fODFs.
        relative_peak_threshold : float, optional
            Only return peaks greater than ``relative_peak_threshold * m``
            where m is the largest peak.
        min_separation_angle : float, optional
            The minimum distance between directions. If two peaks are too close
            only the larger of the two is returned.
        sh_order_max : int, optional
            Spherical harmonics order (l) used in the CSA fit.
        parallel : bool, optional
            Whether to use parallelization in peak-finding during the
            calibration procedure.
        extract_pam_values : bool, optional
            Whether or not to save pam volumes as single nifti files.
        num_processes : int, optional
            If `parallel` is True, the number of subprocesses to use
            (default multiprocessing.cpu_count()). If < 0 the maximal number
            of cores minus ``num_processes + 1`` is used (enter -1 to use as
            many cores as possible). 0 raises an error.
        out_dir : string, optional
            Output directory. (default current directory)
        out_pam : string, optional
            Name of the peaks volume to be saved.
        out_shm : string, optional
            Name of the spherical harmonics volume to be saved.
        out_peaks_dir : string, optional
            Name of the peaks directions volume to be saved.
        out_peaks_values : string, optional
            Name of the peaks values volume to be saved.
        out_peaks_indices : string, optional
            Name of the peaks indices volume to be saved.
        out_sphere : string, optional
            Sphere vertices name to be saved.
        out_gfa : string, optional
            Name of the generalized FA volume to be saved.
        out_b : string, optional
            Name of the B Matrix to be saved.
        out_qa : string, optional
            Name of the Quantitative Anisotropy to be saved.
        References
        ----------
        .. footbibliography::
        """
        io_it = self.get_io_iterator()
        for (
            dwi,
            bval,
            bvec,
            maskfile,
            opam,
            oshm,
            opeaks_dir,
            opeaks_values,
            opeaks_indices,
            osphere,
            ogfa,
            ob,
            oqa,
        ) in io_it:
            logging.info(f"Loading {dwi}")
            data, affine = load_nifti(dwi)
            bvals, bvecs = read_bvals_bvecs(bval, bvec)
            # If all b-values are smaller or equal to the b0 threshold, it is
            # assumed that no thresholding is requested
            if any(mask_non_weighted_bvals(bvals, b0_threshold)):
                if b0_threshold < bvals.min():
                    warn(
                        f"b0_threshold (value: {b0_threshold}) is too low, "
                        "increase your b0_threshold. It should be higher than the "
                        f"first b0 value ({bvals.min()}).",
                        stacklevel=2,
                    )
            gtab = gradient_table(
                bvals, bvecs=bvecs, b0_threshold=b0_threshold, atol=bvecs_tol
            )
            mask_vol = load_nifti_data(maskfile).astype(bool)
            peaks_sphere = default_sphere
            if sphere_name is not None:
                peaks_sphere = get_sphere(name=sphere_name)
            logging.info(f"Starting CSA computations {dwi}")
            csa_model = CsaOdfModel(gtab, sh_order_max)
            peaks_csa = peaks_from_model(
                model=csa_model,
                data=data,
                sphere=peaks_sphere,
                relative_peak_threshold=relative_peak_threshold,
                min_separation_angle=min_separation_angle,
                mask=mask_vol,
                return_sh=True,
                sh_order_max=sh_order_max,
                normalize_peaks=True,
                parallel=parallel,
                num_processes=num_processes,
            )
            peaks_csa.affine = affine
            save_pam(opam, peaks_csa)
            logging.info(f"Finished CSA {dwi}")
            if extract_pam_values:
                pam_to_niftis(
                    peaks_csa,
                    fname_shm=oshm,
                    fname_peaks_dir=opeaks_dir,
                    fname_peaks_values=opeaks_values,
                    fname_peaks_indices=opeaks_indices,
                    fname_sphere=osphere,
                    fname_gfa=ogfa,
                    fname_b=ob,
                    fname_qa=oqa,
                    reshape_dirs=True,
                )
            dname_ = os.path.dirname(opam)
            if dname_ == "":
                logging.info("Pam5 file saved in current directory")
            else:
                logging.info(f"Pam5 file saved in {dname_}")
            return io_it 
 
[docs]
class ReconstDkiFlow(Workflow):
[docs]
    @classmethod
    def get_short_name(cls):
        return "dki" 
[docs]
    def run(
        self,
        input_files,
        bvalues_files,
        bvectors_files,
        mask_files,
        fit_method="WLS",
        b0_threshold=50.0,
        sigma=None,
        save_metrics=None,
        extract_pam_values=False,
        npeaks=5,
        out_dir="",
        out_dt_tensor="dti_tensors.nii.gz",
        out_fa="fa.nii.gz",
        out_ga="ga.nii.gz",
        out_rgb="rgb.nii.gz",
        out_md="md.nii.gz",
        out_ad="ad.nii.gz",
        out_rd="rd.nii.gz",
        out_mode="mode.nii.gz",
        out_evec="evecs.nii.gz",
        out_eval="evals.nii.gz",
        out_dk_tensor="dki_tensors.nii.gz",
        out_mk="mk.nii.gz",
        out_ak="ak.nii.gz",
        out_rk="rk.nii.gz",
        out_pam="peaks.pam5",
        out_peaks_dir="peaks_dirs.nii.gz",
        out_peaks_values="peaks_values.nii.gz",
        out_peaks_indices="peaks_indices.nii.gz",
        out_sphere="sphere.txt",
    ):
        """Workflow for Diffusion Kurtosis reconstruction and for computing
        DKI metrics.
        Performs a DKI reconstruction :footcite:p:`Tabesh2011`,
        :footcite:p:`Jensen2005` on the files by 'globing' ``input_files`` and
        saves the DKI metrics in a directory specified by ``out_dir``.
        Parameters
        ----------
        input_files : string
            Path to the input volumes. This path may contain wildcards to
            process multiple inputs at once.
        bvalues_files : string
            Path to the bvalues files. This path may contain wildcards to use
            multiple bvalues files at once.
        bvectors_files : string
            Path to the bvalues files. This path may contain wildcards to use
            multiple bvalues files at once.
        mask_files : string
            Path to the input masks. This path may contain wildcards to use
            multiple masks at once. (default: No mask used)
        fit_method : string, optional
            can be one of the following:
            'OLS' or 'ULLS' for ordinary least squares
            'WLS' or 'UWLLS' for weighted ordinary least squares
        b0_threshold : float, optional
            Threshold used to find b0 volumes.
        sigma : float, optional
            An estimate of the variance. :footcite:t:`Chang2005` recommend to
            use 1.5267 * std(background_noise), where background_noise is
            estimated from some part of the image known to contain no signal
            (only noise)
        save_metrics : variable string, optional
            List of metrics to save.
            Possible values: fa, ga, rgb, md, ad, rd, mode, tensor, evec, eval
        extract_pam_values : bool, optional
            Save or not to save pam volumes as single nifti files.
        npeaks : int, optional
            Number of peaks to fit in each voxel.
        out_dir : string, optional
            Output directory. (default current directory)
        out_dt_tensor : string, optional
            Name of the tensors volume to be saved.
        out_dk_tensor : string, optional
            Name of the tensors volume to be saved.
        out_fa : string, optional
            Name of the fractional anisotropy volume to be saved.
        out_ga : string, optional
            Name of the geodesic anisotropy volume to be saved.
        out_rgb : string, optional
            Name of the color fa volume to be saved.
        out_md : string, optional
            Name of the mean diffusivity volume to be saved.
        out_ad : string, optional
            Name of the axial diffusivity volume to be saved.
        out_rd : string, optional
            Name of the radial diffusivity volume to be saved.
        out_mode : string, optional
            Name of the mode volume to be saved.
        out_evec : string, optional
            Name of the eigenvectors volume to be saved.
        out_eval : string, optional
            Name of the eigenvalues to be saved.
        out_mk : string, optional
            Name of the mean kurtosis to be saved.
        out_ak : string, optional
            Name of the axial kurtosis to be saved.
        out_rk : string, optional
            Name of the radial kurtosis to be saved.
        out_pam : string, optional
            Name of the peaks volume to be saved.
        out_peaks_dir : string, optional
            Name of the peaks directions volume to be saved.
        out_peaks_values : string, optional
            Name of the peaks values volume to be saved.
        out_peaks_indices : string, optional
            Name of the peaks indices volume to be saved.
        out_sphere : string, optional
            Sphere vertices name to be saved.
        References
        ----------
        .. footbibliography::
        """
        save_metrics = save_metrics or []
        io_it = self.get_io_iterator()
        for (
            dwi,
            bval,
            bvec,
            mask,
            otensor,
            ofa,
            oga,
            orgb,
            omd,
            oad,
            orad,
            omode,
            oevecs,
            oevals,
            odk_tensor,
            omk,
            oak,
            ork,
            opam,
            opeaks_dir,
            opeaks_values,
            opeaks_indices,
            osphere,
        ) in io_it:
            logging.info(f"Computing DKI metrics for {dwi}")
            data, affine = load_nifti(dwi)
            if mask is not None:
                mask = load_nifti_data(mask).astype(bool)
            optional_args = {}
            if fit_method in ["RT", "restore", "RESTORE", "NLLS"]:
                optional_args["sigma"] = sigma
            dkfit, dkmodel, _ = self.get_fitted_tensor(
                data,
                mask,
                bval,
                bvec,
                b0_threshold=b0_threshold,
                fit_method=fit_method,
                optional_args=optional_args,
            )
            if not save_metrics:
                save_metrics = [
                    "mk",
                    "rk",
                    "ak",
                    "fa",
                    "md",
                    "rd",
                    "ad",
                    "ga",
                    "rgb",
                    "mode",
                    "evec",
                    "eval",
                    "dt_tensor",
                    "dk_tensor",
                ]
            evals, evecs, kt = split_dki_param(dkfit.model_params)
            FA = fractional_anisotropy(evals)
            FA[np.isnan(FA)] = 0
            FA = np.clip(FA, 0, 1)
            if "dt_tensor" in save_metrics:
                tensor_vals = lower_triangular(dkfit.quadratic_form)
                correct_order = [0, 1, 3, 2, 4, 5]
                tensor_vals_reordered = tensor_vals[..., correct_order]
                save_nifti(otensor, tensor_vals_reordered.astype(np.float32), affine)
            if "dk_tensor" in save_metrics:
                save_nifti(odk_tensor, dkfit.kt.astype(np.float32), affine)
            if "fa" in save_metrics:
                save_nifti(ofa, FA.astype(np.float32), affine)
            if "ga" in save_metrics:
                GA = geodesic_anisotropy(dkfit.evals)
                save_nifti(oga, GA.astype(np.float32), affine)
            if "rgb" in save_metrics:
                RGB = color_fa(FA, dkfit.evecs)
                save_nifti(orgb, np.array(255 * RGB, "uint8"), affine)
            if "md" in save_metrics:
                MD = mean_diffusivity(dkfit.evals)
                save_nifti(omd, MD.astype(np.float32), affine)
            if "ad" in save_metrics:
                AD = axial_diffusivity(dkfit.evals)
                save_nifti(oad, AD.astype(np.float32), affine)
            if "rd" in save_metrics:
                RD = radial_diffusivity(dkfit.evals)
                save_nifti(orad, RD.astype(np.float32), affine)
            if "mode" in save_metrics:
                MODE = get_mode(dkfit.quadratic_form)
                save_nifti(omode, MODE.astype(np.float32), affine)
            if "evec" in save_metrics:
                save_nifti(oevecs, dkfit.evecs.astype(np.float32), affine)
            if "eval" in save_metrics:
                save_nifti(oevals, dkfit.evals.astype(np.float32), affine)
            if "mk" in save_metrics:
                save_nifti(omk, dkfit.mk().astype(np.float32), affine)
            if "ak" in save_metrics:
                save_nifti(oak, dkfit.ak().astype(np.float32), affine)
            if "rk" in save_metrics:
                save_nifti(ork, dkfit.rk().astype(np.float32), affine)
            logging.info(f"DKI metrics saved in {os.path.dirname(oevals)}")
            pam = tensor_to_pam(
                dkfit.evals.astype(np.float32),
                dkfit.evecs.astype(np.float32),
                affine,
                sphere=default_sphere,
                generate_peaks_indices=False,
                npeaks=npeaks,
            )
            save_pam(opam, pam)
            if extract_pam_values:
                pam_to_niftis(
                    pam,
                    fname_peaks_dir=opeaks_dir,
                    fname_peaks_values=opeaks_values,
                    fname_peaks_indices=opeaks_indices,
                    fname_sphere=osphere,
                    reshape_dirs=True,
                ) 
[docs]
    def get_fitted_tensor(
        self,
        data,
        mask,
        bval,
        bvec,
        b0_threshold=50,
        fit_method="WLS",
        optional_args=None,
    ):
        logging.info("Diffusion kurtosis estimation...")
        bvals, bvecs = read_bvals_bvecs(bval, bvec)
        # If all b-values are smaller or equal to the b0 threshold, it is
        # assumed that no thresholding is requested
        if any(mask_non_weighted_bvals(bvals, b0_threshold)):
            if b0_threshold < bvals.min():
                warn(
                    f"b0_threshold (value: {b0_threshold}) is too low, "
                    "increase your b0_threshold. It should be higher than the "
                    f"first b0 value ({bvals.min()}).",
                    stacklevel=2,
                )
        gtab = gradient_table(bvals, bvecs=bvecs, b0_threshold=b0_threshold)
        dkmodel = DiffusionKurtosisModel(gtab, fit_method=fit_method, **optional_args)
        dkfit = dkmodel.fit(data, mask=mask)
        return dkfit, dkmodel, gtab 
 
[docs]
class ReconstIvimFlow(Workflow):
[docs]
    @classmethod
    def get_short_name(cls):
        return "ivim" 
[docs]
    def run(
        self,
        input_files,
        bvalues_files,
        bvectors_files,
        mask_files,
        split_b_D=400,
        split_b_S0=200,
        b0_threshold=0,
        save_metrics=None,
        out_dir="",
        out_S0_predicted="S0_predicted.nii.gz",
        out_perfusion_fraction="perfusion_fraction.nii.gz",
        out_D_star="D_star.nii.gz",
        out_D="D.nii.gz",
    ):
        """Workflow for Intra-voxel Incoherent Motion reconstruction and for
        computing IVIM metrics.
        Performs a IVIM reconstruction :footcite:p:`LeBihan1988`,
        :footcite:p:`Stejskal1965` on the files by 'globing' ``input_files`` and
        saves the IVIM metrics in a directory specified by ``out_dir``.
        Parameters
        ----------
        input_files : string
            Path to the input volumes. This path may contain wildcards to
            process multiple inputs at once.
        bvalues_files : string
            Path to the bvalues files. This path may contain wildcards to use
            multiple bvalues files at once.
        bvectors_files : string
            Path to the bvalues files. This path may contain wildcards to use
            multiple bvalues files at once.
        mask_files : string
            Path to the input masks. This path may contain wildcards to use
            multiple masks at once. (default: No mask used)
        split_b_D : int, optional
            Value to split the bvals to estimate D for the two-stage process of
            fitting.
        split_b_S0 : int, optional
            Value to split the bvals to estimate S0 for the two-stage process
            of fitting.
        b0_threshold : int, optional
            Threshold value for the b0 bval.
        save_metrics : variable string, optional
            List of metrics to save.
            Possible values: S0_predicted, perfusion_fraction, D_star, D
        out_dir : string, optional
            Output directory. (default current directory)
        out_S0_predicted : string, optional
            Name of the S0 signal estimated to be saved.
        out_perfusion_fraction : string, optional
            Name of the estimated volume fractions to be saved.
        out_D_star : string, optional
            Name of the estimated pseudo-diffusion parameter to be saved.
        out_D : string, optional
            Name of the estimated diffusion parameter to be saved.
        References
        ----------
        .. footbibliography::
        """
        save_metrics = save_metrics or []
        io_it = self.get_io_iterator()
        for (
            dwi,
            bval,
            bvec,
            mask,
            oS0_predicted,
            operfusion_fraction,
            oD_star,
            oD,
        ) in io_it:
            logging.info(f"Computing IVIM metrics for {dwi}")
            data, affine = load_nifti(dwi)
            if mask is not None:
                mask = load_nifti_data(mask).astype(bool)
            ivimfit, _ = self.get_fitted_ivim(
                data, mask, bval, bvec, b0_threshold=b0_threshold
            )
            if not save_metrics:
                save_metrics = ["S0_predicted", "perfusion_fraction", "D_star", "D"]
            if "S0_predicted" in save_metrics:
                save_nifti(
                    oS0_predicted, ivimfit.S0_predicted.astype(np.float32), affine
                )
            if "perfusion_fraction" in save_metrics:
                save_nifti(
                    operfusion_fraction,
                    ivimfit.perfusion_fraction.astype(np.float32),
                    affine,
                )
            if "D_star" in save_metrics:
                save_nifti(oD_star, ivimfit.D_star.astype(np.float32), affine)
            if "D" in save_metrics:
                save_nifti(oD, ivimfit.D.astype(np.float32), affine)
            logging.info(f"IVIM metrics saved in {os.path.dirname(oD)}") 
[docs]
    @warning_for_keywords()
    def get_fitted_ivim(self, data, mask, bval, bvec, *, b0_threshold=50):
        logging.info("Intra-Voxel Incoherent Motion Estimation...")
        bvals, bvecs = read_bvals_bvecs(bval, bvec)
        # If all b-values are smaller or equal to the b0 threshold, it is
        # assumed that no thresholding is requested
        if any(mask_non_weighted_bvals(bvals, b0_threshold)):
            if b0_threshold < bvals.min():
                warn(
                    f"b0_threshold (value: {b0_threshold}) is too low, "
                    "increase your b0_threshold. It should be higher than the "
                    f"first b0 value ({bvals.min()}).",
                    stacklevel=2,
                )
        gtab = gradient_table(bvals, bvecs=bvecs, b0_threshold=b0_threshold)
        ivimmodel = IvimModel(gtab)
        ivimfit = ivimmodel.fit(data, mask=mask)
        return ivimfit, gtab 
 
[docs]
class ReconstRUMBAFlow(Workflow):
[docs]
    @classmethod
    def get_short_name(cls):
        return "rumba" 
[docs]
    @deprecated_params("sh_order", new_name="sh_order_max", since="1.9", until="2.0")
    def run(
        self,
        input_files,
        bvalues_files,
        bvectors_files,
        mask_files,
        *,
        b0_threshold=50.0,
        bvecs_tol=0.01,
        roi_center=None,
        roi_radii=10,
        fa_thr=0.7,
        extract_pam_values=False,
        sh_order_max=8,
        parallel=True,
        num_processes=None,
        gm_response=0.8e-3,
        csf_response=3.0e-3,
        n_iter=600,
        recon_type="smf",
        n_coils=1,
        R=1,
        voxelwise=True,
        use_tv=False,
        sphere_name="repulsion724",
        verbose=False,
        relative_peak_threshold=0.5,
        min_separation_angle=25,
        out_dir="",
        out_pam="peaks.pam5",
        out_shm="shm.nii.gz",
        out_peaks_dir="peaks_dirs.nii.gz",
        out_peaks_values="peaks_values.nii.gz",
        out_peaks_indices="peaks_indices.nii.gz",
        out_gfa="gfa.nii.gz",
        out_sphere="sphere.txt",
        out_b="B.nii.gz",
        out_qa="qa.nii.gz",
    ):
        """Reconstruct the fiber local orientations using the Robust and
        Unbiased Model-BAsed Spherical Deconvolution (RUMBA-SD) model.
        The fiber response function (FRF) is computed using the single-shell,
        single-tissue model, and the voxel-wise fitting procedure is used for
        RUMBA-SD :footcite:p:`CanalesRodriguez2015`.
        Parameters
        ----------
        input_files : string
            Path to the input volumes. This path may contain wildcards to
            process multiple inputs at once.
        bvalues_files : string
            Path to the bvalues files. This path may contain wildcards to use
            multiple bvalues files at once.
        bvectors_files : string
            Path to the bvectors files. This path may contain wildcards to use
            multiple bvectors files at once.
        mask_files : string
            Path to the input masks. This path may contain wildcards to use
            multiple masks at once.
        b0_threshold : float, optional
            Threshold used to find b0 volumes.
        bvecs_tol : float, optional
            Bvecs should be unit vectors.
        roi_center : variable int, optional
            Center of ROI in data. If center is None, it is assumed that it is
            the center of the volume with shape `data.shape[:3]`.
        roi_radii : variable int, optional
            radii of cuboid ROI in voxels.
        fa_thr : float, optional
            FA threshold to compute the WM response function.
        extract_pam_values : bool, optional
            Save or not to save pam volumes as single nifti files.
        sh_order : int, optional
            Spherical harmonics order (l) used in the RUMBA fit.
        parallel : bool, optional
            Whether to use parallelization in peak-finding during the
            calibration procedure.
        num_processes : int, optional
            If `parallel` is True, the number of subprocesses to use
            (default multiprocessing.cpu_count()). If < 0 the maximal number
            of cores minus ``num_processes + 1`` is used (enter -1 to use as
            many cores as possible). 0 raises an error.
        gm_response : float, optional
            Mean diffusivity for GM compartment. If `None`, then grey
            matter volume fraction is not computed.
        csf_response : float, optional
            Mean diffusivity for CSF compartment. If `None`, then CSF
            volume fraction is not computed.
        n_iter : int, optional
            Number of iterations for fODF estimation. Must be a positive int.
        recon_type : str, optional
            MRI reconstruction method type: spatial matched filter (`smf`) or
            sum-of-squares (`sos`). SMF reconstruction generates Rician noise
            while SoS reconstruction generates Noncentral Chi noise.
        n_coils : int, optional
            Number of coils in MRI scanner -- only relevant in SoS
            reconstruction. Must be a positive int. Default: 1
        R : int, optional
            Acceleration factor of the acquisition. For SIEMENS,
            R = iPAT factor. For GE, R = ASSET factor. For PHILIPS,
            R = SENSE factor. Typical values are 1 or 2. Must be a positive
            integer.
        voxelwise : bool, optional
            If true, performs a voxelwise fit. If false, performs a global fit
            on the entire brain at once. The global fit requires a 4D brain
            volume in `fit`.
        use_tv : bool, optional
            If true, applies total variation regularization. This only takes
            effect in a global fit (`voxelwise` is set to `False`). TV can only
            be applied to 4D brain volumes with no singleton dimensions.
        sphere_name : str, optional
            Sphere name on which to reconstruct the fODFs.
        verbose : bool, optional
            If true, logs updates on estimated signal-to-noise ratio after each
            iteration. This only takes effect in a global fit (`voxelwise` is
            set to `False`).
        relative_peak_threshold : float, optional
            Only return peaks greater than ``relative_peak_threshold * m``
             where m is the largest peak.
        min_separation_angle : float, optional
            The minimum distance between directions. If two peaks are too close
            only the larger of the two is returned.
        out_dir : string, optional
            Output directory. (default current directory)
        out_pam : string, optional
            Name of the peaks volume to be saved.
        out_shm : string, optional
            Name of the spherical harmonics volume to be saved.
        out_peaks_dir : string, optional
            Name of the peaks directions volume to be saved.
        out_peaks_values : string, optional
            Name of the peaks values volume to be saved.
        out_peaks_indices : string, optional
            Name of the peaks indices volume to be saved.
        out_gfa : string, optional
            Name of the generalized FA volume to be saved.
        out_sphere : string, optional
            Sphere vertices name to be saved.
        out_b : string, optional
            Name of the B Matrix to be saved.
        out_qa : string, optional
            Name of the Quantitative Anisotropy to be saved.
        References
        ----------
        .. footbibliography::
        """
        io_it = self.get_io_iterator()
        for (
            dwi,
            bval,
            bvec,
            maskfile,
            opam,
            oshm,
            opeaks_dir,
            opeaks_values,
            opeaks_indices,
            ogfa,
            osphere,
            ob,
            oqa,
        ) in io_it:
            # Read the data
            logging.info(f"Loading {dwi}")
            data, affine = load_nifti(dwi)
            bvals, bvecs = read_bvals_bvecs(bval, bvec)
            mask_vol = load_nifti_data(maskfile).astype(bool)
            # If all b-values are smaller or equal to the b0 threshold, it is
            # assumed that no thresholding is requested
            if any(mask_non_weighted_bvals(bvals, b0_threshold)):
                if b0_threshold < bvals.min():
                    warn(
                        f"b0_threshold (value: {b0_threshold}) is too low, "
                        "increase your b0_threshold. It should be higher than the "
                        f"first b0 value ({bvals.min()}).",
                        stacklevel=2,
                    )
            gtab = gradient_table(
                bvals, bvecs=bvecs, b0_threshold=b0_threshold, atol=bvecs_tol
            )
            sphere = get_sphere(name=sphere_name)
            # Compute the FRF
            wm_response, _ = auto_response_ssst(
                gtab, data, roi_center=roi_center, roi_radii=roi_radii, fa_thr=fa_thr
            )
            # Instantiate the RUMBA-SD reconstruction model
            rumba = RumbaSDModel(
                gtab,
                wm_response=wm_response[0],
                gm_response=gm_response,
                csf_response=csf_response,
                n_iter=n_iter,
                recon_type=recon_type,
                n_coils=n_coils,
                R=R,
                voxelwise=voxelwise,
                use_tv=use_tv,
                sphere=sphere,
                verbose=verbose,
            )
            rumba_peaks = peaks_from_model(
                model=rumba,
                data=data,
                sphere=sphere,
                relative_peak_threshold=relative_peak_threshold,
                min_separation_angle=min_separation_angle,
                mask=mask_vol,
                return_sh=True,
                sh_order_max=sh_order_max,
                normalize_peaks=True,
                parallel=parallel,
                num_processes=num_processes,
            )
            logging.info("Peak computation completed.")
            rumba_peaks.affine = affine
            save_pam(opam, rumba_peaks)
            if extract_pam_values:
                pam_to_niftis(
                    rumba_peaks,
                    fname_shm=oshm,
                    fname_peaks_dir=opeaks_dir,
                    fname_peaks_values=opeaks_values,
                    fname_peaks_indices=opeaks_indices,
                    fname_gfa=ogfa,
                    fname_sphere=osphere,
                    fname_b=ob,
                    fname_qa=oqa,
                    reshape_dirs=True,
                )
            dname_ = os.path.dirname(opam)
            if dname_ == "":
                logging.info("Pam5 file saved in current directory")
            else:
                logging.info(f"Pam5 file saved in {dname_}")
            return io_it