dipy_median_otsu#
Synopsis#
Workflow wrapping the median_otsu segmentation method.
Applies median_otsu segmentation on each file found by ‘globing’ input_files and saves the results in a directory specified by out_dir.
Usage#
dipy_median_otsu [OPTIONS] input_files
Input Parameters#
input_filesPath to the input volumes. This path may contain wildcards to process multiple inputs at once.
General Options#
--save_maskedSave mask. (default: False)
--median_radiusRadius (in voxels) of the applied median filter. (default: 2)
--numpassNumber of pass of the median filter. (default: 5)
--autocropIf True, the masked input_volumes will also be cropped using the bounding box defined by the masked data. For example, if diffusion images are of 1x1x1 (mm^3) or higher resolution auto-cropping could reduce their size in memory and speed up some of the analysis. (default: False)
--vol_idx1D array representing indices of
axis=-1of a 4D input_volume. From the command line use something like ‘1,2,3-5,7’. This input is required for 4D volumes. (default: None)--dilatenumber of iterations for binary dilation. (default: None)
--finalize_maskWhether to remove potential holes or islands. Useful for solving minor errors. (default: False)
Output Options#
--out_dirOutput directory. (default: current directory)
--out_maskName of the mask volume to be saved. (default: brain_mask.nii.gz)
--out_maskedName of the masked volume to be saved. (default: dwi_masked.nii.gz)
References#
Garyfallidis, E., M. Brett, B. Amirbekian, A. Rokem, S. Van Der Walt, M. Descoteaux, and I. Nimmo-Smith. Dipy, a library for the analysis of diffusion MRI data. Frontiers in Neuroinformatics, 1-18, 2014.