from dipy.testing.decorators import warning_for_keywords
from dipy.utils.optpkg import optional_package
tf, have_tf, _ = optional_package("tensorflow", min_version="2.0.0")
[docs]
class SingleLayerPerceptron:
    @warning_for_keywords()
    def __init__(
        self,
        *,
        input_shape=(28, 28),
        num_hidden=128,
        act_hidden="relu",
        dropout=0.2,
        num_out=10,
        act_out="softmax",
        optimizer="adam",
        loss="sparse_categorical_crossentropy",
    ):
        """Single Layer Perceptron with Dropout.
        Parameters
        ----------
        input_shape : tuple
            Shape of data to be trained
        num_hidden : int
            Number of nodes in hidden layer
        act_hidden : string
            Activation function used in hidden layer
        dropout : float
            Dropout ratio
        num_out : 10
            Number of nodes in output layer
        act_out : string
            Activation function used in output layer
        optimizer :  string
            Select optimizer. Default adam.
        loss : string
            Select loss function for measuring accuracy.
            Default sparse_categorical_crossentropy.
        """
        self.accuracy = None
        self.loss = None
        model = tf.keras.models.Sequential(
            [
                tf.keras.layers.Input(shape=input_shape),
                tf.keras.layers.Flatten(),
                tf.keras.layers.Dense(num_hidden, activation=act_hidden),
                tf.keras.layers.Dropout(dropout),
                tf.keras.layers.Dense(num_out, activation=act_out),
            ]
        )
        model.compile(optimizer=optimizer, loss=loss, metrics=["accuracy"])
        self.model = model
[docs]
    def summary(self):
        """Get the summary of the model.
        The summary is textual and includes information about:
        The layers and their order in the model.
        The output shape of each layer.
        Returns
        -------
        summary : NoneType
            the summary of the model
        """
        return self.model.summary() 
[docs]
    @warning_for_keywords()
    def fit(self, x_train, y_train, *, epochs=5):
        """Train the model on train dataset.
        The fit method will train the model for a fixed
        number of epochs (iterations) on a dataset.
        Parameters
        ----------
        x_train : ndarray
            the x_train is the train dataset
        y_train : ndarray shape=(BatchSize,)
            the y_train is the labels of the train dataset
        epochs : int (Default = 5)
            the number of epochs
        Returns
        -------
        hist : object
            A History object. Its History.history attribute is a record of
            training loss values and metrics values at successive epochs
        """
        hist = self.model.fit(x_train, y_train, epochs=epochs)
        self.accuracy = hist.history["accuracy"][0]
        self.loss = hist.history["loss"][0]
        return hist 
[docs]
    @warning_for_keywords()
    def evaluate(self, x_test, y_test, *, verbose=2):
        """Evaluate the model on test dataset.
        The evaluate method will evaluate the model on a test
        dataset.
        Parameters
        ----------
        x_test : ndarray
            the x_test is the test dataset
        y_test : ndarray shape=(BatchSize,)
            the y_test is the labels of the test dataset
        verbose : int (Default = 2)
            By setting verbose 0, 1 or 2 you just say how do you want to
            'see' the training progress for each epoch.
        Returns
        -------
        evaluate : List
            return list of loss value and accuracy value on test dataset
        """
        return self.model.evaluate(x_test, y_test, verbose=verbose) 
[docs]
    def predict(self, x_test):
        """Predict the output from input samples.
        The predict method will generates output predictions
        for the input samples.
        Parameters
        ----------
        x_train : ndarray
            the x_test is the test dataset or input samples
        Returns
        -------
        predict : ndarray shape(TestSize,OutputSize)
            Numpy array(s) of predictions.
        """
        return self.model.predict(x_test) 
 
[docs]
class MultipleLayerPercepton:
    @warning_for_keywords()
    def __init__(
        self,
        *,
        input_shape=(28, 28),
        num_hidden=(128,),
        act_hidden="relu",
        dropout=0.2,
        num_out=10,
        act_out="softmax",
        loss="sparse_categorical_crossentropy",
        optimizer="adam",
    ):
        """Multiple Layer Perceptron with Dropout.
        Parameters
        ----------
        input_shape : tuple
            Shape of data to be trained
        num_hidden : array-like
            List of number of nodes in hidden layers
        act_hidden : string
            Activation function used in hidden layer
        dropout : float
            Dropout ratio
        num_out : 10
            Number of nodes in output layer
        act_out : string
            Activation function used in output layer
        optimizer :  string
            Select optimizer. Default adam.
        loss : string
            Select loss function for measuring accuracy.
            Default sparse_categorical_crossentropy.
        """
        self.input_shape = input_shape
        self.num_hidden = num_hidden
        self.act_hidden = act_hidden
        self.dropout = dropout
        self.num_out = num_out
        self.act_out = act_out
        self.loss = loss
        self.optimizer = optimizer
        self.accuracy = None
        # model building
        inp = tf.keras.layers.Input(shape=self.input_shape)
        x = tf.keras.layers.Flatten()(inp)
        for i in range(len(self.num_hidden)):
            x = tf.keras.layers.Dense(self.num_hidden[i])(x)
        x = tf.keras.layers.Dropout(self.dropout)(x)
        out = tf.keras.layers.Dense(self.num_out, activation=self.act_out)(x)
        self.model = tf.keras.models.Model(inputs=inp, outputs=out)
        # compiling the model
        self.model.compile(
            optimizer=self.optimizer, loss=self.loss, metrics=["accuracy"]
        )
[docs]
    def summary(self):
        """Get the summary of the model.
        The summary is textual and includes information about:
        The layers and their order in the model.
        The output shape of each layer.
        Returns
        -------
        summary :  NoneType
            the summary of the model
        """
        return self.model.summary() 
[docs]
    @warning_for_keywords()
    def fit(self, x_train, y_train, *, epochs=5):
        """Train the model on train dataset.
        The fit method will train the model for a fixed
        number of epochs (iterations) on a dataset.
        Parameters
        ----------
        x_train : ndarray
            the x_train is the train dataset
        y_train : ndarray shape=(BatchSize,)
            the y_train is the labels of the train dataset
        epochs : int (Default = 5)
            the number of epochs
        Returns
        -------
        hist : object
            A History object. Its History.history attribute is a record of
            training loss values and metrics values at successive epochs
        """
        hist = self.model.fit(x_train, y_train, epochs=epochs)
        self.accuracy = hist.history["accuracy"][0]
        self.loss = hist.history["loss"][0]
        return hist 
[docs]
    @warning_for_keywords()
    def evaluate(self, x_test, y_test, *, verbose=2):
        """Evaluate the model on test dataset.
        The evaluate method will evaluate the model on a test
        dataset.
        Parameters
        ----------
        x_test : ndarray
            the x_test is the test dataset
        y_test : ndarray shape=(BatchSize,)
            the y_test is the labels of the test dataset
        verbose : int (Default = 2)
            By setting verbose 0, 1 or 2 you just say how do you want to
            'see' the training progress for each epoch.
        Returns
        -------
        evaluate : List
            return list of loss value and accuracy value on test dataset
        """
        return self.model.evaluate(x_test, y_test, verbose=verbose) 
[docs]
    def predict(self, x_test):
        """Predict the output from input samples.
        The predict method will generates output predictions
        for the input samples.
        Parameters
        ----------
        x_train : ndarray
            the x_test is the test dataset or input samples
        Returns
        -------
        predict : ndarray shape(TestSize,OutputSize)
            Numpy array(s) of predictions.
        """
        return self.model.predict(x_test)