nn#
Module: nn.tf#
Module: nn.tf.cnn_1d_denoising#
Title : Denoising diffusion weighted imaging data using CNN#
Obtaining tissue microstructure measurements from diffusion weighted imaging (DWI) with multiple, high b-values is crucial. However, the high noise levels present in these images can adversely affect the accuracy of the microstructural measurements. In this context, we suggest a straightforward denoising technique [1] that can be applied to any DWI dataset as long as a low-noise, single-subject dataset is obtained using the same DWI sequence.
We created a simple 1D-CNN model with five layers, based on the 1D CNN for denoising speech. The model consists of two convolutional layers followed by max-pooling layers, and a dense layer. The first convolutional layer has 16 one-dimensional filters of size 16, and the second layer has 32 filters of size 8. ReLu activation function is applied to both convolutional layers. The max-pooling layer has a kernel size of 2 and a stride of 2. The dense layer maps the features extracted from the noisy image to the low-noise reference image.
Reference#
| 
 | 
Module: nn.tf.deepn4#
Class and helper functions for fitting the DeepN4 model.
| 
 | |
| 
 | |
| 
 | This class is intended for the DeepN4 model. | 
| 
 | 
Module: nn.tf.evac#
Class and helper functions for fitting the EVAC+ model.
| 
 | |
| 
 | |
| 
 | This class is intended for the EVAC+ model. | 
| 
 | Function to prepare image for model input Specific to EVAC+ | 
| 
 | Function to create model for EVAC+ | 
Module: nn.tf.histo_resdnn#
Class and helper functions for fitting the Histological ResDNN model.
| 
 | This class is intended for the ResDNN Histology Network model. | 
Module: nn.tf.model#
| 
 | |
| 
 | 
Module: nn.tf.synb0#
Class and helper functions for fitting the Synb0 model.
| 
 | |
| 
 | |
| 
 | This class is intended for the Synb0 model. | 
| 
 | 
Module: nn.torch#
Module: nn.torch.evac#
Class and helper functions for fitting the EVAC+ model.
| 
 | |
| 
 | |
| 
 | |
| 
 | |
| 
 | This class is intended for the EVAC+ model. | 
| 
 | Function to prepare image for model input Specific to EVAC+ | 
Module: nn.torch.histo_resdnn#
Class and helper functions for fitting the Histological ResDNN model.
| 
 | |
| 
 | This class is intended for the ResDNN Histology Network model. | 
Module: nn.utils#
| 
 | normalization function | 
| 
 | unnormalization function | 
| 
 | Function to reshape image as an input to the model | 
| 
 | Function to recover image from transform_img | 
| 
 | Function to figure out pad and crop range to fit the target shape with the image | 
Cnn1DDenoiser#
- class dipy.nn.tf.cnn_1d_denoising.Cnn1DDenoiser(sig_length, *, optimizer='adam', loss='mean_squared_error', metrics=('accuracy',), loss_weights=None)[source]#
- Bases: - object- Methods - compile(*[, optimizer, loss, metrics, ...])- Configure the model for training. - evaluate(x, y, *[, batch_size, verbose, ...])- Evaluate the model on a test dataset. - fit(x, y, *[, batch_size, epochs, verbose, ...])- Train the model on train dataset. - load_weights(filepath)- Load the model weights from the specified file path. - predict(x, *[, batch_size, verbose, steps, ...])- Generate predictions for input samples. - save_weights(filepath, *[, overwrite])- Save the weights of the model to HDF5 file format. - summary()- Get the summary of the model. - train_test_split(x, y, *[, test_size, ...])- Split the input data into random train and test subsets. - compile(*, optimizer='adam', loss=None, metrics=None, loss_weights=None)[source]#
- Configure the model for training. - Parameters:
- optimizerstr or optimizer object, optional
- Name of optimizer or optimizer object. 
- lossstr or objective function, optional
- Name of objective function or objective function itself. If ‘None’, the model will be compiled without any loss function and can only be used to predict output. 
- metricslist of metrics, optional
- List of metrics to be evaluated by the model during training and testing. 
- loss_weightslist or dict, optional
- Optional list or dictionary specifying scalar coefficients(floats) to weight the loss contributions of different model outputs. The loss value that will be minimized by the model will then be the weighted sum of all individual losses. If a list, it is expected to have a 1:1 mapping to the model’s outputs. If a dict, it is expected to map output names (strings) to scalar coefficients. 
 
 
 - evaluate(x, y, *, batch_size=None, verbose=1, steps=None, callbacks=None, return_dict=False)[source]#
- Evaluate the model on a test dataset. - Parameters:
- xndarray
- Test dataset (high-noise data). If 4D, it will be converted to 1D. 
- yndarray
- Labels of the test dataset (low-noise data). If 4D, it will be converted to 1D. 
- batch_sizeint, optional
- Number of samples per gradient update. 
- verboseint, optional
- Verbosity mode. 0 = silent, 1 = progress bar, 2 = one line per epoch. 
- stepsint, optional
- Total number of steps (batches of samples) before declaring the evaluation round finished. 
- callbackslist, optional
- List of callbacks to apply during evaluation. 
- max_queue_sizeint, optional
- Maximum size for the generator queue. 
- workersint, optional
- Maximum number of processes to spin up when using process-based threading. 
- use_multiprocessingbool, optional
- If True, use process-based threading. 
- return_dictbool, optional
- If True, loss and metric results are returned as a dictionary. 
 
- Returns:
- List or dict
- If return_dict is False, returns a list of [loss, metrics] values on the test dataset. If return_dict is True, returns a dictionary of metric names and their corresponding values. 
 
 
 - fit(x, y, *, batch_size=None, epochs=1, verbose=1, callbacks=None, validation_split=0.0, validation_data=None, shuffle=True, initial_epoch=0, steps_per_epoch=None, validation_steps=None, validation_batch_size=None, validation_freq=1)[source]#
- Train the model on train dataset. - The fit method will train the model for a fixed number of epochs (iterations) on a dataset. If given data is 4D it will convert it into 1D. - Parameters:
- xndarray
- The input data, as an ndarray. 
- yndarray
- The target data, as an ndarray. 
- batch_sizeint or None, optional
- Number of samples per batch of computation. 
- epochsint, optional
- The number of epochs. 
- verbose‘auto’, 0, 1, or 2, optional
- Verbosity mode. 0 = silent, 1 = progress bar, 2 = one line per epoch. 
- callbackslist of keras.callbacks.Callback instances, optional
- List of callbacks to apply during training. 
- validation_splitfloat between 0 and 1, optional
- Fraction of the training data to be used as validation data. 
- validation_datatuple (x_val, y_val) or None, optional
- Data on which to evaluate the loss and any model metrics at the end of each epoch. 
- shuffleboolean, optional
- This argument is ignored when x is a generator or an object of tf.data.Dataset. 
- initial_epochint, optional
- Epoch at which to start training. 
- steps_per_epochint or None, optional
- Total number of steps (batches of samples) before declaring one epoch finished and starting the next epoch. 
- validation_batch_sizeint or None, optional
- Number of samples per validation batch. 
- validation_stepsint or None, optional
- Only relevant if validation_data is provided and is a tf.data dataset. 
- validation_freqint or list/tuple/set, optional
- Only relevant if validation data is provided. If an integer, specifies how many training epochs to run before a new validation run is performed. If a list, tuple, or set, specifies the epochs on which to run validation. 
- max_queue_sizeint, optional
- Used for generator or keras.utils.Sequence input only. 
- workersinteger, optional
- Used for generator or keras.utils.Sequence input only. 
- use_multiprocessingboolean, optional
- Used for generator or keras.utils.Sequence input only. 
 
- Returns:
- histobject
- A History object. Its History.history attribute is a record of training loss values and metrics values at successive epochs. 
 
 
 - load_weights(filepath)[source]#
- Load the model weights from the specified file path. - Parameters:
- filepathstr
- The file path from which to load the weights. 
 
 
 - predict(x, *, batch_size=None, verbose=0, steps=None, callbacks=None)[source]#
- Generate predictions for input samples. - Parameters:
- xndarray
- Input samples. 
- batch_sizeint, optional
- Number of samples per batch. 
- verboseint, optional
- Verbosity mode. 
- stepsint, optional
- Total number of steps (batches of samples) before declaring the prediction round finished. 
- callbackslist, optional
- List of Keras callbacks to apply during prediction. 
- max_queue_sizeint, optional
- Maximum size for the generator queue. 
- workersint, optional
- Maximum number of processes to spin up when using process-based threading. 
- use_multiprocessingbool, optional
- If True, use process-based threading. If False, use thread-based threading. 
 
- Returns:
- ndarray
- Numpy array of predictions. 
 
 
 - save_weights(filepath, *, overwrite=True)[source]#
- Save the weights of the model to HDF5 file format. - Parameters:
- filepathstr
- The path where the weights should be saved. 
- overwritebool,optional
- If True, overwrites the file if it already exists. If False, raises an error if the file already exists. 
 
 
 - summary()[source]#
- Get the summary of the model. - The summary is textual and includes information about: The layers and their order in the model. The output shape of each layer. - Returns:
- summaryNoneType
- the summary of the model 
 
 
 - train_test_split(x, y, *, test_size=None, train_size=None, random_state=None, shuffle=True, stratify=None)[source]#
- Split the input data into random train and test subsets. - Parameters:
- x: numpy array
- input data. 
- y: numpy array
- target data. 
- test_size: float or int, optional
- If float, should be between 0.0 and 1.0 and represent the proportion of the dataset to include in the test split. If int, represents the absolute number of test samples. If None, the value is set to the complement of the train size. If train_size is also None, it will be set to 0.25. 
- train_size: float or int, optional
- If float, should be between 0.0 and 1.0 and represent the proportion of the dataset to include in the train split. If int, represents the absolute number of train samples. If None, the value is automatically set to the complement of the test size. 
- random_state: int, RandomState instance or None, optional
- Controls the shuffling applied to the data before applying the split. Pass an int for reproducible output across multiple function calls. See Glossary. 
- shuffle: bool, optional
- Whether or not to shuffle the data before splitting. If shuffle=False then stratify must be None. 
- stratify: array-like, optional
- If not None, data is split in a stratified fashion, using this as the class labels. Read more in the User Guide. 
 
- Returns:
- Tuple of four numpy arrays: x_train, x_test, y_train, y_test.
 
 
 
EncoderBlock#
- class dipy.nn.tf.deepn4.EncoderBlock(*args, **kwargs)[source]#
- Bases: - Layer- Attributes:
- compute_dtype
- The dtype of the computations performed by the layer. 
- dtype
- Alias of layer.variable_dtype. 
- dtype_policy
- input
- Retrieves the input tensor(s) of a symbolic operation. 
- input_dtype
- The dtype layer inputs should be converted to. 
- input_spec
- losses
- List of scalar losses from add_loss, regularizers and sublayers. 
- metrics
- List of all metrics. 
- metrics_variables
- List of all metric variables. 
- non_trainable_variables
- List of all non-trainable layer state. 
- non_trainable_weights
- List of all non-trainable weight variables of the layer. 
- output
- Retrieves the output tensor(s) of a layer. 
- path
- The path of the layer. 
- quantization_mode
- The quantization mode of this layer, None if not quantized. 
- supports_masking
- Whether this layer supports computing a mask using compute_mask. 
- trainable
- Settable boolean, whether this layer should be trainable or not. 
- trainable_variables
- List of all trainable layer state. 
- trainable_weights
- List of all trainable weight variables of the layer. 
- variable_dtype
- The dtype of the state (weights) of the layer. 
- variables
- List of all layer state, including random seeds. 
- weights
- List of all weight variables of the layer. 
 
 - Methods - __call__(*args, **kwargs)- Call self as a function. - add_loss(loss)- Can be called inside of the call() method to add a scalar loss. - add_variable(shape, initializer[, dtype, ...])- Add a weight variable to the layer. - add_weight([shape, initializer, dtype, ...])- Add a weight variable to the layer. - build_from_config(config)- Builds the layer's states with the supplied config dict. - count_params()- Count the total number of scalars composing the weights. - from_config(config)- Creates an operation from its config. - get_build_config()- Returns a dictionary with the layer's input shape. - get_config()- Returns the config of the object. - get_weights()- Return the values of layer.weights as a list of NumPy arrays. - load_own_variables(store)- Loads the state of the layer. - save_own_variables(store)- Saves the state of the layer. - set_weights(weights)- Sets the values of layer.weights from a list of NumPy arrays. - stateless_call(trainable_variables, ...[, ...])- Call the layer without any side effects. - add_metric - build - call - compute_mask - compute_output_shape - compute_output_spec - quantize - quantized_build - quantized_call - symbolic_call 
DecoderBlock#
- class dipy.nn.tf.deepn4.DecoderBlock(*args, **kwargs)[source]#
- Bases: - Layer- Attributes:
- compute_dtype
- The dtype of the computations performed by the layer. 
- dtype
- Alias of layer.variable_dtype. 
- dtype_policy
- input
- Retrieves the input tensor(s) of a symbolic operation. 
- input_dtype
- The dtype layer inputs should be converted to. 
- input_spec
- losses
- List of scalar losses from add_loss, regularizers and sublayers. 
- metrics
- List of all metrics. 
- metrics_variables
- List of all metric variables. 
- non_trainable_variables
- List of all non-trainable layer state. 
- non_trainable_weights
- List of all non-trainable weight variables of the layer. 
- output
- Retrieves the output tensor(s) of a layer. 
- path
- The path of the layer. 
- quantization_mode
- The quantization mode of this layer, None if not quantized. 
- supports_masking
- Whether this layer supports computing a mask using compute_mask. 
- trainable
- Settable boolean, whether this layer should be trainable or not. 
- trainable_variables
- List of all trainable layer state. 
- trainable_weights
- List of all trainable weight variables of the layer. 
- variable_dtype
- The dtype of the state (weights) of the layer. 
- variables
- List of all layer state, including random seeds. 
- weights
- List of all weight variables of the layer. 
 
 - Methods - __call__(*args, **kwargs)- Call self as a function. - add_loss(loss)- Can be called inside of the call() method to add a scalar loss. - add_variable(shape, initializer[, dtype, ...])- Add a weight variable to the layer. - add_weight([shape, initializer, dtype, ...])- Add a weight variable to the layer. - build_from_config(config)- Builds the layer's states with the supplied config dict. - count_params()- Count the total number of scalars composing the weights. - from_config(config)- Creates an operation from its config. - get_build_config()- Returns a dictionary with the layer's input shape. - get_config()- Returns the config of the object. - get_weights()- Return the values of layer.weights as a list of NumPy arrays. - load_own_variables(store)- Loads the state of the layer. - save_own_variables(store)- Saves the state of the layer. - set_weights(weights)- Sets the values of layer.weights from a list of NumPy arrays. - stateless_call(trainable_variables, ...[, ...])- Call the layer without any side effects. - add_metric - build - call - compute_mask - compute_output_shape - compute_output_spec - quantize - quantized_build - quantized_call - symbolic_call 
DeepN4#
- class dipy.nn.tf.deepn4.DeepN4(*, verbose=False)[source]#
- Bases: - object- This class is intended for the DeepN4 model. - The DeepN4 model [2] predicts the bias field for magnetic field inhomogeneity correction on T1-weighted images. - Methods - Load the model pre-training weights to use for the fitting. - load_model_weights(weights_path)- Load the custom pre-training weights to use for the fitting. - predict(img, img_affine, *[, voxsize])- Wrapper function to facilitate prediction of larger dataset. - load_resample - pad - References - [2] - Praitayini Kanakaraj, Tianyuan Yao, Leon Y. Cai, Ho Hin Lee, Nancy R. Newlin, Michael E. Kim, Chenyu Gao, Kimberly R. Pechman, Derek Archer, Timothy Hohman, Angela Jefferson, Lori L. Beason-Held, Susan M. Resnick, Eleftherios Garyfallidis, Adam Anderson, Kurt G. Schilling, Bennett A. Landman, Daniel Moyer, The Alzheimer’s Disease Neuroimaging Initiative (ADNI), and The BIOCARD Study Team. DeepN4: Learning N4ITK Bias Field Correction for T1-weighted Images. Neuroinformatics, 22(2):193–205, April 2024. URL: https://doi.org/10.1007/s12021-024-09655-9, doi:10.1007/s12021-024-09655-9. - load_model_weights(weights_path)[source]#
- Load the custom pre-training weights to use for the fitting. get_fnames(‘deepn4_default_weights’). - Parameters:
- weights_pathstr
- Path to the file containing the weights (hdf5, saved by tensorflow) 
 
 
 - predict(img, img_affine, *, voxsize=(1, 1, 1))[source]#
- Wrapper function to facilitate prediction of larger dataset. The function will mask, normalize, split, predict and ‘re-assemble’ the data as a volume. - Parameters:
- input_filestring
- Path to the T1 scan 
 
- Returns:
- final_correctednp.ndarray (x, y, z)
- Predicted bias corrected image. The volume has matching shape to the input data 
 
 
 
UNet3D#
Block#
- class dipy.nn.tf.evac.Block(*args, **kwargs)[source]#
- Bases: - Layer- Attributes:
- compute_dtype
- The dtype of the computations performed by the layer. 
- dtype
- Alias of layer.variable_dtype. 
- dtype_policy
- input
- Retrieves the input tensor(s) of a symbolic operation. 
- input_dtype
- The dtype layer inputs should be converted to. 
- input_spec
- losses
- List of scalar losses from add_loss, regularizers and sublayers. 
- metrics
- List of all metrics. 
- metrics_variables
- List of all metric variables. 
- non_trainable_variables
- List of all non-trainable layer state. 
- non_trainable_weights
- List of all non-trainable weight variables of the layer. 
- output
- Retrieves the output tensor(s) of a layer. 
- path
- The path of the layer. 
- quantization_mode
- The quantization mode of this layer, None if not quantized. 
- supports_masking
- Whether this layer supports computing a mask using compute_mask. 
- trainable
- Settable boolean, whether this layer should be trainable or not. 
- trainable_variables
- List of all trainable layer state. 
- trainable_weights
- List of all trainable weight variables of the layer. 
- variable_dtype
- The dtype of the state (weights) of the layer. 
- variables
- List of all layer state, including random seeds. 
- weights
- List of all weight variables of the layer. 
 
 - Methods - __call__(*args, **kwargs)- Call self as a function. - add_loss(loss)- Can be called inside of the call() method to add a scalar loss. - add_variable(shape, initializer[, dtype, ...])- Add a weight variable to the layer. - add_weight([shape, initializer, dtype, ...])- Add a weight variable to the layer. - build_from_config(config)- Builds the layer's states with the supplied config dict. - count_params()- Count the total number of scalars composing the weights. - from_config(config)- Creates an operation from its config. - get_build_config()- Returns a dictionary with the layer's input shape. - get_config()- Returns the config of the object. - get_weights()- Return the values of layer.weights as a list of NumPy arrays. - load_own_variables(store)- Loads the state of the layer. - save_own_variables(store)- Saves the state of the layer. - set_weights(weights)- Sets the values of layer.weights from a list of NumPy arrays. - stateless_call(trainable_variables, ...[, ...])- Call the layer without any side effects. - add_metric - build - call - compute_mask - compute_output_shape - compute_output_spec - quantize - quantized_build - quantized_call - symbolic_call 
ChannelSum#
- class dipy.nn.tf.evac.ChannelSum(*args, **kwargs)[source]#
- Bases: - Layer- Attributes:
- compute_dtype
- The dtype of the computations performed by the layer. 
- dtype
- Alias of layer.variable_dtype. 
- dtype_policy
- input
- Retrieves the input tensor(s) of a symbolic operation. 
- input_dtype
- The dtype layer inputs should be converted to. 
- input_spec
- losses
- List of scalar losses from add_loss, regularizers and sublayers. 
- metrics
- List of all metrics. 
- metrics_variables
- List of all metric variables. 
- non_trainable_variables
- List of all non-trainable layer state. 
- non_trainable_weights
- List of all non-trainable weight variables of the layer. 
- output
- Retrieves the output tensor(s) of a layer. 
- path
- The path of the layer. 
- quantization_mode
- The quantization mode of this layer, None if not quantized. 
- supports_masking
- Whether this layer supports computing a mask using compute_mask. 
- trainable
- Settable boolean, whether this layer should be trainable or not. 
- trainable_variables
- List of all trainable layer state. 
- trainable_weights
- List of all trainable weight variables of the layer. 
- variable_dtype
- The dtype of the state (weights) of the layer. 
- variables
- List of all layer state, including random seeds. 
- weights
- List of all weight variables of the layer. 
 
 - Methods - __call__(*args, **kwargs)- Call self as a function. - add_loss(loss)- Can be called inside of the call() method to add a scalar loss. - add_variable(shape, initializer[, dtype, ...])- Add a weight variable to the layer. - add_weight([shape, initializer, dtype, ...])- Add a weight variable to the layer. - build_from_config(config)- Builds the layer's states with the supplied config dict. - count_params()- Count the total number of scalars composing the weights. - from_config(config)- Creates an operation from its config. - get_build_config()- Returns a dictionary with the layer's input shape. - get_config()- Returns the config of the object. - get_weights()- Return the values of layer.weights as a list of NumPy arrays. - load_own_variables(store)- Loads the state of the layer. - save_own_variables(store)- Saves the state of the layer. - set_weights(weights)- Sets the values of layer.weights from a list of NumPy arrays. - stateless_call(trainable_variables, ...[, ...])- Call the layer without any side effects. - add_metric - build - call - compute_mask - compute_output_shape - compute_output_spec - quantize - quantized_build - quantized_call - symbolic_call 
EVACPlus#
- class dipy.nn.tf.evac.EVACPlus(*, verbose=False)[source]#
- Bases: - object- This class is intended for the EVAC+ model. - The EVAC+ model [3] is a deep learning neural network for brain extraction. It uses a V-net architecture combined with multi-resolution input data, an additional conditional random field (CRF) recurrent layer and supplementary Dice loss term for this recurrent layer. - Methods - Load the model pre-training weights to use for the fitting. - load_model_weights(weights_path)- Load the custom pre-training weights to use for the fitting. - predict(T1, affine, *[, voxsize, ...])- Wrapper function to facilitate prediction of larger dataset. - References - [3] (1,2) - Jong Sung Park, Shreyas Fadnavis, and Eleftherios Garyfallidis. Multi-scale V-net architecture with deep feature CRF layers for brain extraction. Communications Medicine, 4(1):29, February 2024. URL: https://doi.org/10.1038/s43856-024-00452-8, doi:10.1038/s43856-024-00452-8. - fetch_default_weights()[source]#
- Load the model pre-training weights to use for the fitting. While the user can load different weights, the function is mainly intended for the class function ‘predict’. 
 - load_model_weights(weights_path)[source]#
- Load the custom pre-training weights to use for the fitting. - Parameters:
- weights_pathstr
- Path to the file containing the weights (hdf5, saved by tensorflow) 
 
 
 - predict(T1, affine, *, voxsize=(1, 1, 1), batch_size=None, return_affine=False, return_prob=False, finalize_mask=True)[source]#
- Wrapper function to facilitate prediction of larger dataset. - Parameters:
- T1np.ndarray or list of np.ndarray
- For a single image, input should be a 3D array. If multiple images, it should be a a list or tuple. 
- affinenp.ndarray (4, 4) or (batch, 4, 4)
- or list of np.ndarrays with len of batch Affine matrix for the T1 image. Should have batch dimension if T1 has one. 
- voxsizenp.ndarray or list or tuple, optional
- (3,) or (batch, 3) voxel size of the T1 image. 
- batch_sizeint, optional
- Number of images per prediction pass. Only available if data is provided with a batch dimension. Consider lowering it if you get an out of memory error. Increase it if you want it to be faster and have a lot of data. If None, batch_size will be set to 1 if the provided image has a batch dimension. 
- return_affinebool, optional
- Whether to return the affine matrix. Useful if the input was a file path. 
- return_probbool, optional
- Whether to return the probability map instead of a binary mask. Useful for testing. 
- finalize_maskbool, optional
- Whether to remove potential holes or islands. Useful for solving minor errors. 
 
- Returns:
- pred_outputnp.ndarray (…) or (batch, …)
- Predicted brain mask 
- affinenp.ndarray (…) or (batch, …)
- affine matrix of mask only if return_affine is True 
 
 
 
prepare_img#
init_model#
HistoResDNN#
- class dipy.nn.tf.histo_resdnn.HistoResDNN(*, sh_order_max=8, basis_type='tournier07', verbose=False)[source]#
- Bases: - object- This class is intended for the ResDNN Histology Network model. - ResDNN [4] is a deep neural network that employs residual blocks deep neural network to predict ground truth SH coefficients from SH coefficients computed using DWI data. To this end, authors considered histology FOD-computed SH coefficients (obtained from ex vivo non-human primate acquisitions) as their ground truth, and the DWI-computed SH coefficients as their target. - Methods - Load the model pre-training weights to use for the fitting. - load_model_weights(weights_path)- Load the custom pre-training weights to use for the fitting. - predict(data, gtab, *[, mask, chunk_size])- Wrapper function to facilitate prediction of larger dataset. - References - [4] (1,2) - Vishwesh Nath, Kurt G. Schilling, Prasanna Parvathaneni, Colin B. Hansen, Allison E. Hainline, Yuankai Huo, Justin A. Blaber, Ilwoo Lyu, Vaibhav Janve, Yurui Gao, Iwona Stepniewska, Adam W. Anderson, and Bennett A. Landman. Deep learning reveals untapped information for local white-matter fiber reconstruction in diffusion-weighted MRI. Magnetic Resonance Imaging, 62:220–227, 2019. URL: https://doi.org/10.1016/j.mri.2019.07.012, doi:10.1016/j.mri.2019.07.012. - fetch_default_weights()[source]#
- Load the model pre-training weights to use for the fitting. Will not work if the declared SH_ORDER does not match the weights expected input. 
 - load_model_weights(weights_path)[source]#
- Load the custom pre-training weights to use for the fitting. Will not work if the declared SH_ORDER does not match the weights expected input. - The weights for a sh_order of 8 can be obtained via the function:
- get_fnames(name=’histo_resdnn_tf_weights’). 
 - Parameters:
- weights_pathstr
- Path to the file containing the weights (hdf5, saved by tensorflow) 
 
 
 - predict(data, gtab, *, mask=None, chunk_size=1000)[source]#
- Wrapper function to facilitate prediction of larger dataset. The function will mask, normalize, split, predict and ‘re-assemble’ the data as a volume. - Parameters:
- datanp.ndarray
- DWI signal in a 4D array 
- gtabGradientTable class instance
- The acquisition scheme matching the data (must contain at least one b0) 
- masknp.ndarray, optional
- Binary mask of the brain to avoid unnecessary computation and unreliable prediction outside the brain. Default: Compute prediction only for nonzero voxels (with at least one nonzero DWI value). 
 
- Returns:
- pred_sh_coefnp.ndarray (x, y, z, M)
- Predicted fODF (as SH). The volume has matching shape to the input data, but with - (sh_order_max + 1) * (sh_order_max + 2) / 2as a last dimension.
 
 
 
SingleLayerPerceptron#
- class dipy.nn.tf.model.SingleLayerPerceptron(*, input_shape=(28, 28), num_hidden=128, act_hidden='relu', dropout=0.2, num_out=10, act_out='softmax', optimizer='adam', loss='sparse_categorical_crossentropy')[source]#
- Bases: - object- Methods - evaluate(x_test, y_test, *[, verbose])- Evaluate the model on test dataset. - fit(x_train, y_train, *[, epochs])- Train the model on train dataset. - predict(x_test)- Predict the output from input samples. - summary()- Get the summary of the model. - evaluate(x_test, y_test, *, verbose=2)[source]#
- Evaluate the model on test dataset. - The evaluate method will evaluate the model on a test dataset. - Parameters:
- x_testndarray
- the x_test is the test dataset 
- y_testndarray shape=(BatchSize,)
- the y_test is the labels of the test dataset 
- verboseint (Default = 2)
- By setting verbose 0, 1 or 2 you just say how do you want to ‘see’ the training progress for each epoch. 
 
- Returns:
- evaluateList
- return list of loss value and accuracy value on test dataset 
 
 
 - fit(x_train, y_train, *, epochs=5)[source]#
- Train the model on train dataset. - The fit method will train the model for a fixed number of epochs (iterations) on a dataset. - Parameters:
- x_trainndarray
- the x_train is the train dataset 
- y_trainndarray shape=(BatchSize,)
- the y_train is the labels of the train dataset 
- epochsint (Default = 5)
- the number of epochs 
 
- Returns:
- histobject
- A History object. Its History.history attribute is a record of training loss values and metrics values at successive epochs 
 
 
 
MultipleLayerPercepton#
- class dipy.nn.tf.model.MultipleLayerPercepton(*, input_shape=(28, 28), num_hidden=(128,), act_hidden='relu', dropout=0.2, num_out=10, act_out='softmax', loss='sparse_categorical_crossentropy', optimizer='adam')[source]#
- Bases: - object- Methods - evaluate(x_test, y_test, *[, verbose])- Evaluate the model on test dataset. - fit(x_train, y_train, *[, epochs])- Train the model on train dataset. - predict(x_test)- Predict the output from input samples. - summary()- Get the summary of the model. - evaluate(x_test, y_test, *, verbose=2)[source]#
- Evaluate the model on test dataset. - The evaluate method will evaluate the model on a test dataset. - Parameters:
- x_testndarray
- the x_test is the test dataset 
- y_testndarray shape=(BatchSize,)
- the y_test is the labels of the test dataset 
- verboseint (Default = 2)
- By setting verbose 0, 1 or 2 you just say how do you want to ‘see’ the training progress for each epoch. 
 
- Returns:
- evaluateList
- return list of loss value and accuracy value on test dataset 
 
 
 - fit(x_train, y_train, *, epochs=5)[source]#
- Train the model on train dataset. - The fit method will train the model for a fixed number of epochs (iterations) on a dataset. - Parameters:
- x_trainndarray
- the x_train is the train dataset 
- y_trainndarray shape=(BatchSize,)
- the y_train is the labels of the train dataset 
- epochsint (Default = 5)
- the number of epochs 
 
- Returns:
- histobject
- A History object. Its History.history attribute is a record of training loss values and metrics values at successive epochs 
 
 
 
EncoderBlock#
- class dipy.nn.tf.synb0.EncoderBlock(*args, **kwargs)[source]#
- Bases: - Layer- Attributes:
- compute_dtype
- The dtype of the computations performed by the layer. 
- dtype
- Alias of layer.variable_dtype. 
- dtype_policy
- input
- Retrieves the input tensor(s) of a symbolic operation. 
- input_dtype
- The dtype layer inputs should be converted to. 
- input_spec
- losses
- List of scalar losses from add_loss, regularizers and sublayers. 
- metrics
- List of all metrics. 
- metrics_variables
- List of all metric variables. 
- non_trainable_variables
- List of all non-trainable layer state. 
- non_trainable_weights
- List of all non-trainable weight variables of the layer. 
- output
- Retrieves the output tensor(s) of a layer. 
- path
- The path of the layer. 
- quantization_mode
- The quantization mode of this layer, None if not quantized. 
- supports_masking
- Whether this layer supports computing a mask using compute_mask. 
- trainable
- Settable boolean, whether this layer should be trainable or not. 
- trainable_variables
- List of all trainable layer state. 
- trainable_weights
- List of all trainable weight variables of the layer. 
- variable_dtype
- The dtype of the state (weights) of the layer. 
- variables
- List of all layer state, including random seeds. 
- weights
- List of all weight variables of the layer. 
 
 - Methods - __call__(*args, **kwargs)- Call self as a function. - add_loss(loss)- Can be called inside of the call() method to add a scalar loss. - add_variable(shape, initializer[, dtype, ...])- Add a weight variable to the layer. - add_weight([shape, initializer, dtype, ...])- Add a weight variable to the layer. - build_from_config(config)- Builds the layer's states with the supplied config dict. - count_params()- Count the total number of scalars composing the weights. - from_config(config)- Creates an operation from its config. - get_build_config()- Returns a dictionary with the layer's input shape. - get_config()- Returns the config of the object. - get_weights()- Return the values of layer.weights as a list of NumPy arrays. - load_own_variables(store)- Loads the state of the layer. - save_own_variables(store)- Saves the state of the layer. - set_weights(weights)- Sets the values of layer.weights from a list of NumPy arrays. - stateless_call(trainable_variables, ...[, ...])- Call the layer without any side effects. - add_metric - build - call - compute_mask - compute_output_shape - compute_output_spec - quantize - quantized_build - quantized_call - symbolic_call 
DecoderBlock#
- class dipy.nn.tf.synb0.DecoderBlock(*args, **kwargs)[source]#
- Bases: - Layer- Attributes:
- compute_dtype
- The dtype of the computations performed by the layer. 
- dtype
- Alias of layer.variable_dtype. 
- dtype_policy
- input
- Retrieves the input tensor(s) of a symbolic operation. 
- input_dtype
- The dtype layer inputs should be converted to. 
- input_spec
- losses
- List of scalar losses from add_loss, regularizers and sublayers. 
- metrics
- List of all metrics. 
- metrics_variables
- List of all metric variables. 
- non_trainable_variables
- List of all non-trainable layer state. 
- non_trainable_weights
- List of all non-trainable weight variables of the layer. 
- output
- Retrieves the output tensor(s) of a layer. 
- path
- The path of the layer. 
- quantization_mode
- The quantization mode of this layer, None if not quantized. 
- supports_masking
- Whether this layer supports computing a mask using compute_mask. 
- trainable
- Settable boolean, whether this layer should be trainable or not. 
- trainable_variables
- List of all trainable layer state. 
- trainable_weights
- List of all trainable weight variables of the layer. 
- variable_dtype
- The dtype of the state (weights) of the layer. 
- variables
- List of all layer state, including random seeds. 
- weights
- List of all weight variables of the layer. 
 
 - Methods - __call__(*args, **kwargs)- Call self as a function. - add_loss(loss)- Can be called inside of the call() method to add a scalar loss. - add_variable(shape, initializer[, dtype, ...])- Add a weight variable to the layer. - add_weight([shape, initializer, dtype, ...])- Add a weight variable to the layer. - build_from_config(config)- Builds the layer's states with the supplied config dict. - count_params()- Count the total number of scalars composing the weights. - from_config(config)- Creates an operation from its config. - get_build_config()- Returns a dictionary with the layer's input shape. - get_config()- Returns the config of the object. - get_weights()- Return the values of layer.weights as a list of NumPy arrays. - load_own_variables(store)- Loads the state of the layer. - save_own_variables(store)- Saves the state of the layer. - set_weights(weights)- Sets the values of layer.weights from a list of NumPy arrays. - stateless_call(trainable_variables, ...[, ...])- Call the layer without any side effects. - add_metric - build - call - compute_mask - compute_output_shape - compute_output_spec - quantize - quantized_build - quantized_call - symbolic_call 
Synb0#
- class dipy.nn.tf.synb0.Synb0(*, verbose=False)[source]#
- Bases: - object- This class is intended for the Synb0 model. - Synb0 [5], [6] uses a neural network to synthesize a b0 volume for distortion correction in DWI images. - The model is the deep learning part of the Synb0-Disco pipeline, thus stand-alone usage is not recommended. - Methods - Load the model pre-training weights to use for the fitting. - load_model_weights(weights_path)- Load the custom pre-training weights to use for the fitting. - predict(b0, T1, *[, batch_size, average])- Wrapper function to facilitate prediction of larger dataset. - References - [5] - Kurt G. Schilling, Justin Blaber, Yuankai Huo, Allen Newton, Colin Hansen, Vishwesh Nath, Andrea T. Shafer, Owen Williams, Susan M. Resnick, Baxter Rogers, Adam W. Anderson, and Bennett A. Landman. Synthesized b0 for diffusion distortion correction (Synb0-DisCo). Magnetic Resonance Imaging, 64:62–70, 2019. Artificial Intelligence in MRI. URL: https://doi.org/10.1016/j.mri.2019.05.008, doi:10.1016/j.mri.2019.05.008. - [6] - Kurt G. Schilling, Justin Blaber, Colin Hansen, Leon Cai, Baxter Rogers, Adam W. Anderson, Seth Smith, Praitayini Kanakaraj, Tonia Rex, Susan M. Resnick, Andrea T. Shafer, Laurie E. Cutting, Neil Woodward, David Zald, and Bennett A. Landman. Distortion correction of diffusion weighted MRI without reverse phase-encoding scans or field-maps. PLOS ONE, 15(7):1–15, July 2020. URL: https://doi.org/10.1371/journal.pone.0236418, doi:10.1371/journal.pone.0236418. - fetch_default_weights(idx)[source]#
- Load the model pre-training weights to use for the fitting. While the user can load different weights, the function is mainly intended for the class function ‘predict’. - Parameters:
- idxint
- The idx of the default weights. It can be from 0~4. 
 
 
 - load_model_weights(weights_path)[source]#
- Load the custom pre-training weights to use for the fitting. - Parameters:
- weights_pathstr
- Path to the file containing the weights (hdf5, saved by tensorflow) 
 
 
 - predict(b0, T1, *, batch_size=None, average=True)[source]#
- Wrapper function to facilitate prediction of larger dataset. The function will pad the data to meet the required shape of image. Note that the b0 and T1 image should have the same shape - Parameters:
- b0np.ndarray (batch, 77, 91, 77) or (77, 91, 77)
- For a single image, input should be a 3D array. If multiple images, there should also be a batch dimension. 
- T1np.ndarray (batch, 77, 91, 77) or (77, 91, 77)
- For a single image, input should be a 3D array. If multiple images, there should also be a batch dimension. 
- batch_sizeint
- Number of images per prediction pass. Only available if data is provided with a batch dimension. Consider lowering it if you get an out of memory error. Increase it if you want it to be faster and have a lot of data. If None, batch_size will be set to 1 if the provided image has a batch dimension. Default is None 
- averagebool
- Whether the function follows the Synb0-Disco pipeline and averages the prediction of 5 different models. If False, it uses the loaded weights for prediction. Default is True. 
- Returns
- ——-
- pred_outputnp.ndarray (…) or (batch, …)
- Reconstructed b-inf image(s) 
 
 
 
UNet3D#
MoveDimLayer#
- class dipy.nn.torch.evac.MoveDimLayer(source_dim, dest_dim)[source]#
- Bases: - Module- Methods - add_module(name, module)- Add a child module to the current module. - apply(fn)- Apply - fnrecursively to every submodule (as returned by- .children()) as well as self.- bfloat16()- Casts all floating point parameters and buffers to - bfloat16datatype.- buffers([recurse])- Return an iterator over module buffers. - children()- Return an iterator over immediate children modules. - compile(*args, **kwargs)- Compile this Module's forward using - torch.compile().- cpu()- Move all model parameters and buffers to the CPU. - cuda([device])- Move all model parameters and buffers to the GPU. - double()- Casts all floating point parameters and buffers to - doubledatatype.- eval()- Set the module in evaluation mode. - extra_repr()- Set the extra representation of the module. - float()- Casts all floating point parameters and buffers to - floatdatatype.- forward(x)- Define the computation performed at every call. - get_buffer(target)- Return the buffer given by - targetif it exists, otherwise throw an error.- get_extra_state()- Return any extra state to include in the module's state_dict. - get_parameter(target)- Return the parameter given by - targetif it exists, otherwise throw an error.- get_submodule(target)- Return the submodule given by - targetif it exists, otherwise throw an error.- half()- Casts all floating point parameters and buffers to - halfdatatype.- ipu([device])- Move all model parameters and buffers to the IPU. - load_state_dict(state_dict[, strict, assign])- Copy parameters and buffers from - state_dictinto this module and its descendants.- modules()- Return an iterator over all modules in the network. - mtia([device])- Move all model parameters and buffers to the MTIA. - named_buffers([prefix, recurse, ...])- Return an iterator over module buffers, yielding both the name of the buffer as well as the buffer itself. - named_children()- Return an iterator over immediate children modules, yielding both the name of the module as well as the module itself. - named_modules([memo, prefix, remove_duplicate])- Return an iterator over all modules in the network, yielding both the name of the module as well as the module itself. - named_parameters([prefix, recurse, ...])- Return an iterator over module parameters, yielding both the name of the parameter as well as the parameter itself. - parameters([recurse])- Return an iterator over module parameters. - register_backward_hook(hook)- Register a backward hook on the module. - register_buffer(name, tensor[, persistent])- Add a buffer to the module. - register_forward_hook(hook, *[, prepend, ...])- Register a forward hook on the module. - register_forward_pre_hook(hook, *[, ...])- Register a forward pre-hook on the module. - register_full_backward_hook(hook[, prepend])- Register a backward hook on the module. - register_full_backward_pre_hook(hook[, prepend])- Register a backward pre-hook on the module. - register_load_state_dict_post_hook(hook)- Register a post-hook to be run after module's - load_state_dict()is called.- register_load_state_dict_pre_hook(hook)- Register a pre-hook to be run before module's - load_state_dict()is called.- register_module(name, module)- Alias for - add_module().- register_parameter(name, param)- Add a parameter to the module. - register_state_dict_post_hook(hook)- Register a post-hook for the - state_dict()method.- register_state_dict_pre_hook(hook)- Register a pre-hook for the - state_dict()method.- requires_grad_([requires_grad])- Change if autograd should record operations on parameters in this module. - set_extra_state(state)- Set extra state contained in the loaded state_dict. - set_submodule(target, module)- Set the submodule given by - targetif it exists, otherwise throw an error.- share_memory()- See - torch.Tensor.share_memory_().- state_dict(*args[, destination, prefix, ...])- Return a dictionary containing references to the whole state of the module. - to(*args, **kwargs)- Move and/or cast the parameters and buffers. - to_empty(*, device[, recurse])- Move the parameters and buffers to the specified device without copying storage. - train([mode])- Set the module in training mode. - type(dst_type)- Casts all parameters and buffers to - dst_type.- xpu([device])- Move all model parameters and buffers to the XPU. - zero_grad([set_to_none])- Reset gradients of all model parameters. - __call__ - forward(x)[source]#
- Define the computation performed at every call. - Should be overridden by all subclasses. - Note - Although the recipe for forward pass needs to be defined within this function, one should call the - Moduleinstance afterwards instead of this since the former takes care of running the registered hooks while the latter silently ignores them.
 
ChannelSum#
- class dipy.nn.torch.evac.ChannelSum[source]#
- Bases: - Module- Methods - add_module(name, module)- Add a child module to the current module. - apply(fn)- Apply - fnrecursively to every submodule (as returned by- .children()) as well as self.- bfloat16()- Casts all floating point parameters and buffers to - bfloat16datatype.- buffers([recurse])- Return an iterator over module buffers. - children()- Return an iterator over immediate children modules. - compile(*args, **kwargs)- Compile this Module's forward using - torch.compile().- cpu()- Move all model parameters and buffers to the CPU. - cuda([device])- Move all model parameters and buffers to the GPU. - double()- Casts all floating point parameters and buffers to - doubledatatype.- eval()- Set the module in evaluation mode. - extra_repr()- Set the extra representation of the module. - float()- Casts all floating point parameters and buffers to - floatdatatype.- forward(inputs)- Define the computation performed at every call. - get_buffer(target)- Return the buffer given by - targetif it exists, otherwise throw an error.- get_extra_state()- Return any extra state to include in the module's state_dict. - get_parameter(target)- Return the parameter given by - targetif it exists, otherwise throw an error.- get_submodule(target)- Return the submodule given by - targetif it exists, otherwise throw an error.- half()- Casts all floating point parameters and buffers to - halfdatatype.- ipu([device])- Move all model parameters and buffers to the IPU. - load_state_dict(state_dict[, strict, assign])- Copy parameters and buffers from - state_dictinto this module and its descendants.- modules()- Return an iterator over all modules in the network. - mtia([device])- Move all model parameters and buffers to the MTIA. - named_buffers([prefix, recurse, ...])- Return an iterator over module buffers, yielding both the name of the buffer as well as the buffer itself. - named_children()- Return an iterator over immediate children modules, yielding both the name of the module as well as the module itself. - named_modules([memo, prefix, remove_duplicate])- Return an iterator over all modules in the network, yielding both the name of the module as well as the module itself. - named_parameters([prefix, recurse, ...])- Return an iterator over module parameters, yielding both the name of the parameter as well as the parameter itself. - parameters([recurse])- Return an iterator over module parameters. - register_backward_hook(hook)- Register a backward hook on the module. - register_buffer(name, tensor[, persistent])- Add a buffer to the module. - register_forward_hook(hook, *[, prepend, ...])- Register a forward hook on the module. - register_forward_pre_hook(hook, *[, ...])- Register a forward pre-hook on the module. - register_full_backward_hook(hook[, prepend])- Register a backward hook on the module. - register_full_backward_pre_hook(hook[, prepend])- Register a backward pre-hook on the module. - register_load_state_dict_post_hook(hook)- Register a post-hook to be run after module's - load_state_dict()is called.- register_load_state_dict_pre_hook(hook)- Register a pre-hook to be run before module's - load_state_dict()is called.- register_module(name, module)- Alias for - add_module().- register_parameter(name, param)- Add a parameter to the module. - register_state_dict_post_hook(hook)- Register a post-hook for the - state_dict()method.- register_state_dict_pre_hook(hook)- Register a pre-hook for the - state_dict()method.- requires_grad_([requires_grad])- Change if autograd should record operations on parameters in this module. - set_extra_state(state)- Set extra state contained in the loaded state_dict. - set_submodule(target, module)- Set the submodule given by - targetif it exists, otherwise throw an error.- share_memory()- See - torch.Tensor.share_memory_().- state_dict(*args[, destination, prefix, ...])- Return a dictionary containing references to the whole state of the module. - to(*args, **kwargs)- Move and/or cast the parameters and buffers. - to_empty(*, device[, recurse])- Move the parameters and buffers to the specified device without copying storage. - train([mode])- Set the module in training mode. - type(dst_type)- Casts all parameters and buffers to - dst_type.- xpu([device])- Move all model parameters and buffers to the XPU. - zero_grad([set_to_none])- Reset gradients of all model parameters. - __call__ - forward(inputs)[source]#
- Define the computation performed at every call. - Should be overridden by all subclasses. - Note - Although the recipe for forward pass needs to be defined within this function, one should call the - Moduleinstance afterwards instead of this since the former takes care of running the registered hooks while the latter silently ignores them.
 
Add#
- class dipy.nn.torch.evac.Add[source]#
- Bases: - Module- Methods - add_module(name, module)- Add a child module to the current module. - apply(fn)- Apply - fnrecursively to every submodule (as returned by- .children()) as well as self.- bfloat16()- Casts all floating point parameters and buffers to - bfloat16datatype.- buffers([recurse])- Return an iterator over module buffers. - children()- Return an iterator over immediate children modules. - compile(*args, **kwargs)- Compile this Module's forward using - torch.compile().- cpu()- Move all model parameters and buffers to the CPU. - cuda([device])- Move all model parameters and buffers to the GPU. - double()- Casts all floating point parameters and buffers to - doubledatatype.- eval()- Set the module in evaluation mode. - extra_repr()- Set the extra representation of the module. - float()- Casts all floating point parameters and buffers to - floatdatatype.- forward(x, passed)- Define the computation performed at every call. - get_buffer(target)- Return the buffer given by - targetif it exists, otherwise throw an error.- get_extra_state()- Return any extra state to include in the module's state_dict. - get_parameter(target)- Return the parameter given by - targetif it exists, otherwise throw an error.- get_submodule(target)- Return the submodule given by - targetif it exists, otherwise throw an error.- half()- Casts all floating point parameters and buffers to - halfdatatype.- ipu([device])- Move all model parameters and buffers to the IPU. - load_state_dict(state_dict[, strict, assign])- Copy parameters and buffers from - state_dictinto this module and its descendants.- modules()- Return an iterator over all modules in the network. - mtia([device])- Move all model parameters and buffers to the MTIA. - named_buffers([prefix, recurse, ...])- Return an iterator over module buffers, yielding both the name of the buffer as well as the buffer itself. - named_children()- Return an iterator over immediate children modules, yielding both the name of the module as well as the module itself. - named_modules([memo, prefix, remove_duplicate])- Return an iterator over all modules in the network, yielding both the name of the module as well as the module itself. - named_parameters([prefix, recurse, ...])- Return an iterator over module parameters, yielding both the name of the parameter as well as the parameter itself. - parameters([recurse])- Return an iterator over module parameters. - register_backward_hook(hook)- Register a backward hook on the module. - register_buffer(name, tensor[, persistent])- Add a buffer to the module. - register_forward_hook(hook, *[, prepend, ...])- Register a forward hook on the module. - register_forward_pre_hook(hook, *[, ...])- Register a forward pre-hook on the module. - register_full_backward_hook(hook[, prepend])- Register a backward hook on the module. - register_full_backward_pre_hook(hook[, prepend])- Register a backward pre-hook on the module. - register_load_state_dict_post_hook(hook)- Register a post-hook to be run after module's - load_state_dict()is called.- register_load_state_dict_pre_hook(hook)- Register a pre-hook to be run before module's - load_state_dict()is called.- register_module(name, module)- Alias for - add_module().- register_parameter(name, param)- Add a parameter to the module. - register_state_dict_post_hook(hook)- Register a post-hook for the - state_dict()method.- register_state_dict_pre_hook(hook)- Register a pre-hook for the - state_dict()method.- requires_grad_([requires_grad])- Change if autograd should record operations on parameters in this module. - set_extra_state(state)- Set extra state contained in the loaded state_dict. - set_submodule(target, module)- Set the submodule given by - targetif it exists, otherwise throw an error.- share_memory()- See - torch.Tensor.share_memory_().- state_dict(*args[, destination, prefix, ...])- Return a dictionary containing references to the whole state of the module. - to(*args, **kwargs)- Move and/or cast the parameters and buffers. - to_empty(*, device[, recurse])- Move the parameters and buffers to the specified device without copying storage. - train([mode])- Set the module in training mode. - type(dst_type)- Casts all parameters and buffers to - dst_type.- xpu([device])- Move all model parameters and buffers to the XPU. - zero_grad([set_to_none])- Reset gradients of all model parameters. - __call__ - forward(x, passed)[source]#
- Define the computation performed at every call. - Should be overridden by all subclasses. - Note - Although the recipe for forward pass needs to be defined within this function, one should call the - Moduleinstance afterwards instead of this since the former takes care of running the registered hooks while the latter silently ignores them.
 
Block#
- class dipy.nn.torch.evac.Block(in_channels, out_channels, kernel_size, strides, padding, drop_r, n_layers, *, passed_channel=1, layer_type='down')[source]#
- Bases: - Module- Methods - add_module(name, module)- Add a child module to the current module. - apply(fn)- Apply - fnrecursively to every submodule (as returned by- .children()) as well as self.- bfloat16()- Casts all floating point parameters and buffers to - bfloat16datatype.- buffers([recurse])- Return an iterator over module buffers. - children()- Return an iterator over immediate children modules. - compile(*args, **kwargs)- Compile this Module's forward using - torch.compile().- cpu()- Move all model parameters and buffers to the CPU. - cuda([device])- Move all model parameters and buffers to the GPU. - double()- Casts all floating point parameters and buffers to - doubledatatype.- eval()- Set the module in evaluation mode. - extra_repr()- Set the extra representation of the module. - float()- Casts all floating point parameters and buffers to - floatdatatype.- forward(input, passed)- Define the computation performed at every call. - get_buffer(target)- Return the buffer given by - targetif it exists, otherwise throw an error.- get_extra_state()- Return any extra state to include in the module's state_dict. - get_parameter(target)- Return the parameter given by - targetif it exists, otherwise throw an error.- get_submodule(target)- Return the submodule given by - targetif it exists, otherwise throw an error.- half()- Casts all floating point parameters and buffers to - halfdatatype.- ipu([device])- Move all model parameters and buffers to the IPU. - load_state_dict(state_dict[, strict, assign])- Copy parameters and buffers from - state_dictinto this module and its descendants.- modules()- Return an iterator over all modules in the network. - mtia([device])- Move all model parameters and buffers to the MTIA. - named_buffers([prefix, recurse, ...])- Return an iterator over module buffers, yielding both the name of the buffer as well as the buffer itself. - named_children()- Return an iterator over immediate children modules, yielding both the name of the module as well as the module itself. - named_modules([memo, prefix, remove_duplicate])- Return an iterator over all modules in the network, yielding both the name of the module as well as the module itself. - named_parameters([prefix, recurse, ...])- Return an iterator over module parameters, yielding both the name of the parameter as well as the parameter itself. - parameters([recurse])- Return an iterator over module parameters. - register_backward_hook(hook)- Register a backward hook on the module. - register_buffer(name, tensor[, persistent])- Add a buffer to the module. - register_forward_hook(hook, *[, prepend, ...])- Register a forward hook on the module. - register_forward_pre_hook(hook, *[, ...])- Register a forward pre-hook on the module. - register_full_backward_hook(hook[, prepend])- Register a backward hook on the module. - register_full_backward_pre_hook(hook[, prepend])- Register a backward pre-hook on the module. - register_load_state_dict_post_hook(hook)- Register a post-hook to be run after module's - load_state_dict()is called.- register_load_state_dict_pre_hook(hook)- Register a pre-hook to be run before module's - load_state_dict()is called.- register_module(name, module)- Alias for - add_module().- register_parameter(name, param)- Add a parameter to the module. - register_state_dict_post_hook(hook)- Register a post-hook for the - state_dict()method.- register_state_dict_pre_hook(hook)- Register a pre-hook for the - state_dict()method.- requires_grad_([requires_grad])- Change if autograd should record operations on parameters in this module. - set_extra_state(state)- Set extra state contained in the loaded state_dict. - set_submodule(target, module)- Set the submodule given by - targetif it exists, otherwise throw an error.- share_memory()- See - torch.Tensor.share_memory_().- state_dict(*args[, destination, prefix, ...])- Return a dictionary containing references to the whole state of the module. - to(*args, **kwargs)- Move and/or cast the parameters and buffers. - to_empty(*, device[, recurse])- Move the parameters and buffers to the specified device without copying storage. - train([mode])- Set the module in training mode. - type(dst_type)- Casts all parameters and buffers to - dst_type.- xpu([device])- Move all model parameters and buffers to the XPU. - zero_grad([set_to_none])- Reset gradients of all model parameters. - __call__ - forward(input, passed)[source]#
- Define the computation performed at every call. - Should be overridden by all subclasses. - Note - Although the recipe for forward pass needs to be defined within this function, one should call the - Moduleinstance afterwards instead of this since the former takes care of running the registered hooks while the latter silently ignores them.
 
Model#
- class dipy.nn.torch.evac.Model(model_scale=16)[source]#
- Bases: - Module- Methods - add_module(name, module)- Add a child module to the current module. - apply(fn)- Apply - fnrecursively to every submodule (as returned by- .children()) as well as self.- bfloat16()- Casts all floating point parameters and buffers to - bfloat16datatype.- buffers([recurse])- Return an iterator over module buffers. - children()- Return an iterator over immediate children modules. - compile(*args, **kwargs)- Compile this Module's forward using - torch.compile().- cpu()- Move all model parameters and buffers to the CPU. - cuda([device])- Move all model parameters and buffers to the GPU. - double()- Casts all floating point parameters and buffers to - doubledatatype.- eval()- Set the module in evaluation mode. - extra_repr()- Set the extra representation of the module. - float()- Casts all floating point parameters and buffers to - floatdatatype.- forward(inputs, raw_input_2, raw_input_3, ...)- Define the computation performed at every call. - get_buffer(target)- Return the buffer given by - targetif it exists, otherwise throw an error.- get_extra_state()- Return any extra state to include in the module's state_dict. - get_parameter(target)- Return the parameter given by - targetif it exists, otherwise throw an error.- get_submodule(target)- Return the submodule given by - targetif it exists, otherwise throw an error.- half()- Casts all floating point parameters and buffers to - halfdatatype.- ipu([device])- Move all model parameters and buffers to the IPU. - load_state_dict(state_dict[, strict, assign])- Copy parameters and buffers from - state_dictinto this module and its descendants.- modules()- Return an iterator over all modules in the network. - mtia([device])- Move all model parameters and buffers to the MTIA. - named_buffers([prefix, recurse, ...])- Return an iterator over module buffers, yielding both the name of the buffer as well as the buffer itself. - named_children()- Return an iterator over immediate children modules, yielding both the name of the module as well as the module itself. - named_modules([memo, prefix, remove_duplicate])- Return an iterator over all modules in the network, yielding both the name of the module as well as the module itself. - named_parameters([prefix, recurse, ...])- Return an iterator over module parameters, yielding both the name of the parameter as well as the parameter itself. - parameters([recurse])- Return an iterator over module parameters. - register_backward_hook(hook)- Register a backward hook on the module. - register_buffer(name, tensor[, persistent])- Add a buffer to the module. - register_forward_hook(hook, *[, prepend, ...])- Register a forward hook on the module. - register_forward_pre_hook(hook, *[, ...])- Register a forward pre-hook on the module. - register_full_backward_hook(hook[, prepend])- Register a backward hook on the module. - register_full_backward_pre_hook(hook[, prepend])- Register a backward pre-hook on the module. - register_load_state_dict_post_hook(hook)- Register a post-hook to be run after module's - load_state_dict()is called.- register_load_state_dict_pre_hook(hook)- Register a pre-hook to be run before module's - load_state_dict()is called.- register_module(name, module)- Alias for - add_module().- register_parameter(name, param)- Add a parameter to the module. - register_state_dict_post_hook(hook)- Register a post-hook for the - state_dict()method.- register_state_dict_pre_hook(hook)- Register a pre-hook for the - state_dict()method.- requires_grad_([requires_grad])- Change if autograd should record operations on parameters in this module. - set_extra_state(state)- Set extra state contained in the loaded state_dict. - set_submodule(target, module)- Set the submodule given by - targetif it exists, otherwise throw an error.- share_memory()- See - torch.Tensor.share_memory_().- state_dict(*args[, destination, prefix, ...])- Return a dictionary containing references to the whole state of the module. - to(*args, **kwargs)- Move and/or cast the parameters and buffers. - to_empty(*, device[, recurse])- Move the parameters and buffers to the specified device without copying storage. - train([mode])- Set the module in training mode. - type(dst_type)- Casts all parameters and buffers to - dst_type.- xpu([device])- Move all model parameters and buffers to the XPU. - zero_grad([set_to_none])- Reset gradients of all model parameters. - __call__ - forward(inputs, raw_input_2, raw_input_3, raw_input_4, raw_input_5)[source]#
- Define the computation performed at every call. - Should be overridden by all subclasses. - Note - Although the recipe for forward pass needs to be defined within this function, one should call the - Moduleinstance afterwards instead of this since the former takes care of running the registered hooks while the latter silently ignores them.
 
EVACPlus#
- class dipy.nn.torch.evac.EVACPlus(*, verbose=False)[source]#
- Bases: - object- This class is intended for the EVAC+ model. - The EVAC+ model [3] is a deep learning neural network for brain extraction. It uses a V-net architecture combined with multi-resolution input data, an additional conditional random field (CRF) recurrent layer and supplementary Dice loss term for this recurrent layer. - Methods - Load the model pre-training weights to use for the fitting. - load_model_weights(weights_path)- Load the custom pre-training weights to use for the fitting. - predict(T1, affine, *[, voxsize, ...])- Wrapper function to facilitate prediction of larger dataset. - init_model - References - fetch_default_weights()[source]#
- Load the model pre-training weights to use for the fitting. - While the user can load different weights, the function is mainly intended for the class function ‘predict’. 
 - load_model_weights(weights_path)[source]#
- Load the custom pre-training weights to use for the fitting. - Parameters:
- weights_pathstr
- Path to the file containing the weights (pth, saved by Pytorch) 
 
 
 - predict(T1, affine, *, voxsize=(1, 1, 1), batch_size=None, return_affine=False, return_prob=False, finalize_mask=True)[source]#
- Wrapper function to facilitate prediction of larger dataset. - Parameters:
- T1np.ndarray or list of np.ndarray
- For a single image, input should be a 3D array. If multiple images, it should be a a list or tuple. 
- affinenp.ndarray (4, 4) or (batch, 4, 4)
- or list of np.ndarrays with len of batch Affine matrix for the T1 image. Should have batch dimension if T1 has one. 
- voxsizenp.ndarray or list or tuple, optional
- (3,) or (batch, 3) voxel size of the T1 image. 
- batch_sizeint, optional
- Number of images per prediction pass. Only available if data is provided with a batch dimension. Consider lowering it if you get an out of memory error. Increase it if you want it to be faster and have a lot of data. If None, batch_size will be set to 1 if the provided image has a batch dimension. 
- return_affinebool, optional
- Whether to return the affine matrix. Useful if the input was a file path. 
- return_probbool, optional
- Whether to return the probability map instead of a binary mask. Useful for testing. 
- finalize_maskbool, optional
- Whether to remove potential holes or islands. Useful for solving minor errors. 
 
- Returns:
- pred_outputnp.ndarray (…) or (batch, …)
- Predicted brain mask 
- affinenp.ndarray (…) or (batch, …)
- affine matrix of mask only if return_affine is True 
 
 
 
prepare_img#
DenseModel#
- class dipy.nn.torch.histo_resdnn.DenseModel(sh_size, num_hidden)[source]#
- Bases: - Module- Methods - add_module(name, module)- Add a child module to the current module. - apply(fn)- Apply - fnrecursively to every submodule (as returned by- .children()) as well as self.- bfloat16()- Casts all floating point parameters and buffers to - bfloat16datatype.- buffers([recurse])- Return an iterator over module buffers. - children()- Return an iterator over immediate children modules. - compile(*args, **kwargs)- Compile this Module's forward using - torch.compile().- cpu()- Move all model parameters and buffers to the CPU. - cuda([device])- Move all model parameters and buffers to the GPU. - double()- Casts all floating point parameters and buffers to - doubledatatype.- eval()- Set the module in evaluation mode. - extra_repr()- Set the extra representation of the module. - float()- Casts all floating point parameters and buffers to - floatdatatype.- forward(x)- Define the computation performed at every call. - get_buffer(target)- Return the buffer given by - targetif it exists, otherwise throw an error.- get_extra_state()- Return any extra state to include in the module's state_dict. - get_parameter(target)- Return the parameter given by - targetif it exists, otherwise throw an error.- get_submodule(target)- Return the submodule given by - targetif it exists, otherwise throw an error.- half()- Casts all floating point parameters and buffers to - halfdatatype.- ipu([device])- Move all model parameters and buffers to the IPU. - load_state_dict(state_dict[, strict, assign])- Copy parameters and buffers from - state_dictinto this module and its descendants.- modules()- Return an iterator over all modules in the network. - mtia([device])- Move all model parameters and buffers to the MTIA. - named_buffers([prefix, recurse, ...])- Return an iterator over module buffers, yielding both the name of the buffer as well as the buffer itself. - named_children()- Return an iterator over immediate children modules, yielding both the name of the module as well as the module itself. - named_modules([memo, prefix, remove_duplicate])- Return an iterator over all modules in the network, yielding both the name of the module as well as the module itself. - named_parameters([prefix, recurse, ...])- Return an iterator over module parameters, yielding both the name of the parameter as well as the parameter itself. - parameters([recurse])- Return an iterator over module parameters. - register_backward_hook(hook)- Register a backward hook on the module. - register_buffer(name, tensor[, persistent])- Add a buffer to the module. - register_forward_hook(hook, *[, prepend, ...])- Register a forward hook on the module. - register_forward_pre_hook(hook, *[, ...])- Register a forward pre-hook on the module. - register_full_backward_hook(hook[, prepend])- Register a backward hook on the module. - register_full_backward_pre_hook(hook[, prepend])- Register a backward pre-hook on the module. - register_load_state_dict_post_hook(hook)- Register a post-hook to be run after module's - load_state_dict()is called.- register_load_state_dict_pre_hook(hook)- Register a pre-hook to be run before module's - load_state_dict()is called.- register_module(name, module)- Alias for - add_module().- register_parameter(name, param)- Add a parameter to the module. - register_state_dict_post_hook(hook)- Register a post-hook for the - state_dict()method.- register_state_dict_pre_hook(hook)- Register a pre-hook for the - state_dict()method.- requires_grad_([requires_grad])- Change if autograd should record operations on parameters in this module. - set_extra_state(state)- Set extra state contained in the loaded state_dict. - set_submodule(target, module)- Set the submodule given by - targetif it exists, otherwise throw an error.- share_memory()- See - torch.Tensor.share_memory_().- state_dict(*args[, destination, prefix, ...])- Return a dictionary containing references to the whole state of the module. - to(*args, **kwargs)- Move and/or cast the parameters and buffers. - to_empty(*, device[, recurse])- Move the parameters and buffers to the specified device without copying storage. - train([mode])- Set the module in training mode. - type(dst_type)- Casts all parameters and buffers to - dst_type.- xpu([device])- Move all model parameters and buffers to the XPU. - zero_grad([set_to_none])- Reset gradients of all model parameters. - __call__ - forward(x)[source]#
- Define the computation performed at every call. - Should be overridden by all subclasses. - Note - Although the recipe for forward pass needs to be defined within this function, one should call the - Moduleinstance afterwards instead of this since the former takes care of running the registered hooks while the latter silently ignores them.
 
HistoResDNN#
- class dipy.nn.torch.histo_resdnn.HistoResDNN(*, sh_order_max=8, basis_type='tournier07', verbose=False)[source]#
- Bases: - object- This class is intended for the ResDNN Histology Network model. - ResDNN [4] is a deep neural network that employs residual blocks deep neural network to predict ground truth SH coefficients from SH coefficients computed using DWI data. To this end, authors considered histology FOD-computed SH coefficients (obtained from ex vivo non-human primate acquisitions) as their ground truth, and the DWI-computed SH coefficients as their target. - Methods - Load the model pre-training weights to use for the fitting. - load_model_weights(weights_path)- Load the custom pre-training weights to use for the fitting. - predict(data, gtab, *[, mask, chunk_size])- Wrapper function to facilitate prediction of larger dataset. - References - fetch_default_weights()[source]#
- Load the model pre-training weights to use for the fitting. Will not work if the declared SH_ORDER does not match the weights expected input. 
 - load_model_weights(weights_path)[source]#
- Load the custom pre-training weights to use for the fitting. Will not work if the declared SH_ORDER does not match the weights expected input. - The weights for a sh_order of 8 can be obtained via the function:
- get_fnames(‘histo_resdnn_torch_weights’). 
 - Parameters:
- weights_pathstr
- Path to the file containing the weights (pth, saved by Pytorch) 
 
 
 - predict(data, gtab, *, mask=None, chunk_size=1000)[source]#
- Wrapper function to facilitate prediction of larger dataset. The function will mask, normalize, split, predict and ‘re-assemble’ the data as a volume. - Parameters:
- datanp.ndarray
- DWI signal in a 4D array 
- gtabGradientTable class instance
- The acquisition scheme matching the data (must contain at least one b0) 
- masknp.ndarray, optional
- Binary mask of the brain to avoid unnecessary computation and unreliable prediction outside the brain. Default: Compute prediction only for nonzero voxels (with at least one nonzero DWI value). 
 
- Returns:
- pred_sh_coefnp.ndarray (x, y, z, M)
- Predicted fODF (as SH). The volume has matching shape to the input data, but with - (sh_order_max + 1) * (sh_order_max + 2) / 2as a last dimension.
 
 
 
normalize#
- dipy.nn.utils.normalize(image, *, min_v=None, max_v=None, new_min=-1, new_max=1)[source]#
- normalization function - Parameters:
- imagenp.ndarray
- Image to be normalized. 
- min_vint or float, optional
- minimum value range for normalization intensities below min_v will be clipped if None it is set to min value of image Default : None 
- max_vint or float, optional
- maximum value range for normalization intensities above max_v will be clipped if None it is set to max value of image Default : None 
- new_minint or float, optional
- new minimum value after normalization Default : 0 
- new_maxint or float, optional
- new maximum value after normalization Default : 1 
 
- Returns:
- np.ndarray
- Normalized image from range new_min to new_max 
 
 
unnormalize#
- dipy.nn.utils.unnormalize(image, norm_min, norm_max, min_v, max_v)[source]#
- unnormalization function - Parameters:
- imagenp.ndarray
- norm_minint or float
- minimum value of normalized image 
- norm_maxint or float
- maximum value of normalized image 
- min_vint or float
- minimum value of unnormalized image 
- max_vint or float
- maximum value of unnormalized image 
 
- Returns:
- np.ndarray
- unnormalized image from range min_v to max_v 
 
 
transform_img#
- dipy.nn.utils.transform_img(image, affine, *, voxsize=None, considered_points='corners', init_shape=(256, 256, 256), scale=2)[source]#
- Function to reshape image as an input to the model - Parameters:
- imagenp.ndarray
- Image to transform to voxelspace 
- affinenp.ndarray
- Affine matrix provided by the file 
- voxsizenp.ndarray (3,), optional
- Voxel size of the image 
- considered_pointsstr, optional
- which points to consider when calculating the boundary of the image. If there is shearing in the affine, ‘all’ might be more accurate 
- init_shapelist, tuple or numpy array (3,), optional
- Initial shape to transform the image to 
- scalefloat, optional
- How much we want to scale the image 
 
- Returns:
- tuple
- Tuple with variables for recover_img 
 
 
recover_img#
- dipy.nn.utils.recover_img(image, inv_affine, mid_shape, ori_shape, offset_array, voxsize, scale, crop_vs, pad_vs)[source]#
- Function to recover image from transform_img - Parameters:
- imagenp.ndarray
- Image to recover 
- inv_affinenp.ndarray
- Affine matrix returned from transform_img 
- mid_shapenp.ndarray (3,)
- shape of image returned from transform_img 
- ori_shapetuple (3,)
- original shape of the image 
- offset_arraynp.ndarray
- Affine matrix that was used in transform_img to translate the center 
- voxsizenp.ndarray (3,)
- Voxel size used in transform_img 
- scalefloat
- Scale used in transform_img 
- crop_vsnp.ndarray (3,2)
- crop range used in transform_img 
- pad_vsnp.ndarray (3,2)
- pad range used in transform_img 
 
- Returns:
- image2np.ndarray
- Recovered image 
 
 
pad_crop#
- dipy.nn.utils.pad_crop(image, target_shape)[source]#
- Function to figure out pad and crop range to fit the target shape with the image - Parameters:
- imagenp.ndarray
- Target image 
- target_shape(3,)
- Target shape 
 
- Returns:
- imagenp.ndarray
- Padded/cropped image 
- pad_vsnp.ndarray (3,2)
- Pad range used 
- crop_vsnp.ndarray (3,2)
- Crop range used