dipy_gibbs_ringing#

Synopsis#

Workflow for applying Gibbs Ringing method.

See [1] and [2] for further details about the method.

Usage#

dipy_gibbs_ringing [OPTIONS] input_files

Input Parameters#

  • input_files

    Path to the input volumes. This path may contain wildcards to process multiple inputs at once.

General Options#

  • --slice_axis

    Data axis corresponding to the number of acquired slices. Could be (0, 1, or 2): for example, a value of 2 would mean the third axis.

  • --n_points

    Number of neighbour points to access local TV (see note).

  • --num_processes

    Split the calculation to a pool of children processes. Only applies to 3D or 4D data arrays. Default is 1. If < 0 the maximal number of cores minus num_processes + 1 is used (enter -1 to use as many cores as possible). 0 raises an error.

Output Options#

  • --out_dir

    Output directory. (default current directory)

  • --out_unring

    Name of the resulting denoised volume.

References#

Garyfallidis, E., M. Brett, B. Amirbekian, A. Rokem, S. Van Der Walt, M. Descoteaux, and I. Nimmo-Smith. Dipy, a library for the analysis of diffusion MRI data. Frontiers in Neuroinformatics, 1-18, 2014.