dipy_gibbs_ringing#
Usage#
dipy_gibbs_ringing [-h] [–slice_axis int] [–n_points int] [–num_processes int] [–out_dir str] [–out_unring str] input_files
Workflow for applying Gibbs Ringing method.
Positional Arguments#
input_files Path to the input volumes. This path may contain wildcards to process multiple inputs at once.
- options:
- -h, --help
show this help message and exit
- --slice_axis int
Data axis corresponding to the number of acquired slices. Could be (0, 1, or 2): for example, a value of 2 would mean the third axis.
- --n_points int
Number of neighbour points to access local TV (see note).
- --num_processes int
Split the calculation to a pool of children processes. Only applies to 3D or 4D data arrays. Default is 1. If < 0 the maximal number of cores minus
num_processes + 1
is used (enter -1 to use as many cores as possible). 0 raises an error.
Output Arguments(Optional)#
- --out_dir str
Output directory. (default current directory)
- --out_unring str
Name of the resulting denoised volume.
References#
Garyfallidis, E., M. Brett, B. Amirbekian, A. Rokem, S. Van Der Walt, M. Descoteaux, and I. Nimmo-Smith. Dipy, a library for the analysis of diffusion MRI data. Frontiers in Neuroinformatics, 1-18, 2014.