Source code for dipy.core.gradients

import logging
from warnings import warn

import numpy as np
from scipy.linalg import inv, polar

from dipy.core.geometry import vec2vec_rotmat, vector_norm
from dipy.core.onetime import auto_attr
from dipy.core.sphere import HemiSphere, disperse_charges
from dipy.io import gradients as io
from dipy.testing.decorators import warning_for_keywords

WATER_GYROMAGNETIC_RATIO = 267.513e6  # 1/(sT)

logger = logging.getLogger(__name__)


[docs] def b0_threshold_empty_gradient_message(bvals, idx, b0_threshold): """Message about the ``b0_threshold`` value resulting in no gradient selection. Parameters ---------- bvals : (N,) ndarray The b-value, or magnitude, of each gradient direction. idx : ndarray Indices of the gradients to be selected. b0_threshold : float Gradients with b-value less than or equal to `b0_threshold` are considered to not have diffusion weighting. Returns ------- str Message. """ return ( "Filtering gradient values with a b0 threshold value " f"of {b0_threshold} results in no gradients being " f"selected for the b-values ({bvals[idx]}) corresponding " f"to the requested indices ({idx}). Lower the b0 threshold " "value." )
[docs] def b0_threshold_update_slicing_message(slice_start): """Message for b0 threshold value update for slicing. Parameters ---------- slice_start : int Starting index for slicing. Returns ------- str Message. """ return f"Updating b0_threshold to {slice_start} for slicing."
[docs] def mask_non_weighted_bvals(bvals, b0_threshold): """Create a diffusion gradient-weighting mask for the b-values according to the provided b0 threshold value. Parameters ---------- bvals : (N,) ndarray The b-value, or magnitude, of each gradient direction. b0_threshold : float Gradients with b-value less than or equal to `b0_threshold` are considered to not have diffusion weighting. Returns ------- ndarray Gradient-weighting mask: True for all b-value indices whose value is smaller or equal to ``b0_threshold``; False otherwise. """ return bvals <= b0_threshold
[docs] class GradientTable: """Diffusion gradient information Parameters ---------- gradients : array_like (N, 3) Diffusion gradients. The direction of each of these vectors corresponds to the b-vector, and the length corresponds to the b-value. b0_threshold : float Gradients with b-value less than or equal to `b0_threshold` are considered as b0s i.e. without diffusion weighting. Attributes ---------- gradients : (N,3) ndarray diffusion gradients bvals : (N,) ndarray The b-value, or magnitude, of each gradient direction. qvals: (N,) ndarray The q-value for each gradient direction. Needs big and small delta. bvecs : (N,3) ndarray The direction, represented as a unit vector, of each gradient. b0s_mask : (N,) ndarray Boolean array indicating which gradients have no diffusion weighting, ie b-value is close to 0. b0_threshold : float Gradients with b-value less than or equal to `b0_threshold` are considered to not have diffusion weighting. btens : (N,3,3) ndarray The b-tensor of each gradient direction. See Also -------- gradient_table Notes ----- The GradientTable object is immutable. Do NOT assign attributes. If you have your gradient table in a bval & bvec format, we recommend using the factory function gradient_table """ @warning_for_keywords() def __init__( self, gradients, *, big_delta=None, small_delta=None, b0_threshold=50, btens=None, ): """Constructor for GradientTable class""" gradients = np.asarray(gradients) if gradients.ndim != 2 or gradients.shape[1] != 3: raise ValueError("gradients should be an (N, 3) array") self.gradients = gradients # Avoid nan gradients. Set these to 0 instead: self.gradients = np.where(np.isnan(gradients), 0.0, gradients) self.big_delta = big_delta self.small_delta = small_delta self.b0_threshold = b0_threshold if btens is not None: linear_tensor = np.array([[1, 0, 0], [0, 0, 0], [0, 0, 0]]) planar_tensor = np.array([[0, 0, 0], [0, 1, 0], [0, 0, 1]]) / 2 spherical_tensor = np.array([[1, 0, 0], [0, 1, 0], [0, 0, 1]]) / 3 cigar_tensor = np.array([[2, 0, 0], [0, 0.5, 0], [0, 0, 0.5]]) / 3 if isinstance(btens, str): b_tensors = np.zeros((len(self.bvals), 3, 3)) if btens == "LTE": b_tensor = linear_tensor elif btens == "PTE": b_tensor = planar_tensor elif btens == "STE": b_tensor = spherical_tensor elif btens == "CTE": b_tensor = cigar_tensor else: raise ValueError( f"{btens} is an invalid value for btens. " + "Please provide one of the following: " + "'LTE', 'PTE', 'STE', 'CTE'." ) for i, (bvec, bval) in enumerate(zip(self.bvecs, self.bvals)): if btens == "STE": b_tensors[i] = b_tensor * bval else: R = vec2vec_rotmat(np.array([1, 0, 0]), bvec) b_tensors[i] = np.matmul(np.matmul(R, b_tensor), R.T) * bval self.btens = b_tensors elif isinstance(btens, np.ndarray) and btens.shape in ( (gradients.shape[0],), (gradients.shape[0], 1), (1, gradients.shape[0]), ): b_tensors = np.zeros((len(self.bvals), 3, 3)) if btens.shape == (1, gradients.shape[0]): btens = btens.reshape((gradients.shape[0], 1)) for i, (bvec, bval) in enumerate(zip(self.bvecs, self.bvals)): R = vec2vec_rotmat(np.array([1, 0, 0]), bvec) if btens[i] == "LTE": b_tensors[i] = ( np.matmul(np.matmul(R, linear_tensor), R.T) * bval ) elif btens[i] == "PTE": b_tensors[i] = ( np.matmul(np.matmul(R, planar_tensor), R.T) * bval ) elif btens[i] == "STE": b_tensors[i] = spherical_tensor * bval elif btens[i] == "CTE": b_tensors[i] = np.matmul(np.matmul(R, cigar_tensor), R.T) * bval else: raise ValueError( f"{btens[i]} is an invalid value in btens. " + "Array element options: 'LTE', 'PTE', 'STE', " + "'CTE'." ) self.btens = b_tensors elif isinstance(btens, np.ndarray) and btens.shape == ( gradients.shape[0], 3, 3, ): self.btens = btens else: raise ValueError( f"{btens} is an invalid value for btens. " + "Please provide a string, an array of " + "strings, or an array of exact b-tensors. " + "String options: 'LTE', 'PTE', 'STE', 'CTE'" ) else: self.btens = None
[docs] @auto_attr def bvals(self): return vector_norm(self.gradients)
[docs] @auto_attr def tau(self): return self.big_delta - self.small_delta / 3.0
[docs] @auto_attr def qvals(self): tau = self.big_delta - self.small_delta / 3.0 return np.sqrt(self.bvals / tau) / (2 * np.pi)
[docs] @auto_attr def gradient_strength(self): tau = self.big_delta - self.small_delta / 3.0 qvals = np.sqrt(self.bvals / tau) / (2 * np.pi) gradient_strength = ( qvals * (2 * np.pi) / (self.small_delta * WATER_GYROMAGNETIC_RATIO) ) return gradient_strength
[docs] @auto_attr def b0s_mask(self): return mask_non_weighted_bvals(self.bvals, self.b0_threshold)
[docs] @auto_attr def bvecs(self): # To get unit vectors we divide by bvals, where bvals is 0 we divide by # 1 to avoid making nans denom = self.bvals + (self.bvals == 0) denom = denom.reshape((-1, 1)) return self.gradients / denom
def __getitem__(self, idx): if isinstance(idx, int): idx = [idx] # convert in a list if integer. elif isinstance(idx, slice): # Get the lower bound of the slice slice_start = idx.start if idx.start is not None else 0 # Check if it is different from b0_threshold if slice_start != self.b0_threshold: # Update b0_threshold and warn the user self.b0_threshold = slice_start warn( b0_threshold_update_slicing_message(slice_start), UserWarning, stacklevel=2, ) idx = range(*idx.indices(len(self.bvals))) mask = np.logical_not( mask_non_weighted_bvals(self.bvals[idx], self.b0_threshold) ) if not any(mask): raise ValueError( b0_threshold_empty_gradient_message(self.bvals, idx, self.b0_threshold) ) # Apply the mask to select the desired b-values and b-vectors bvals_selected = self.bvals[idx][mask] bvecs_selected = self.bvecs[idx, :][mask, :] # Create a new MyGradientTable object with the selected b-values # and b-vectors return gradient_table_from_bvals_bvecs( bvals_selected, bvecs_selected, big_delta=self.big_delta, small_delta=self.small_delta, b0_threshold=self.b0_threshold, btens=self.btens, ) # removing atol parameter as it's not in the constructor # of GradientTable. @property def info(self, use_logging=False): show = logging.info if use_logging else print show(self.__str__()) def __str__(self): msg = f"B-values shape {self.bvals.shape}\n" msg += f" min {self.bvals.min():f}\n" msg += f" max {self.bvals.max():f}\n" msg += f"B-vectors shape {self.bvecs.shape}\n" msg += f" min {self.bvecs.min():f}\n" msg += f" max {self.bvecs.max():f}\n" return msg def __len__(self): """Get the number of gradients. Includes the b0s. Examples -------- >>> bvals = np.array([1000, 1000, 1000, 1000, 2000, 2000, 2000, 2000, 0]) >>> bvecs = generate_bvecs(bvals.shape[-1]) >>> gtab = gradient_table(bvals, bvecs=bvecs) >>> len(gtab) 9 """ return len(self.bvals)
[docs] @warning_for_keywords() def gradient_table_from_bvals_bvecs( bvals, bvecs, *, b0_threshold=50, atol=1e-2, btens=None, **kwargs ): """Creates a GradientTable from a bvals array and a bvecs array Parameters ---------- bvals : array_like (N,) The b-value, or magnitude, of each gradient direction. bvecs : array_like (N, 3) The direction, represented as a unit vector, of each gradient. b0_threshold : float Gradients with b-value less than or equal to `b0_threshold` are considered to not have diffusion weighting. If its value is equal to or larger than all values in b-vals, then it is assumed that no thresholding is requested. atol : float Each vector in `bvecs` must be a unit vectors up to a tolerance of `atol`. btens : can be any of three options 1. a string specifying the shape of the encoding tensor for all volumes in data. Options: 'LTE', 'PTE', 'STE', 'CTE' corresponding to linear, planar, spherical, and "cigar-shaped" tensor encoding. Tensors are rotated so that linear and cigar tensors are aligned with the corresponding gradient direction and the planar tensor's normal is aligned with the corresponding gradient direction. Magnitude is scaled to match the b-value. 2. an array of strings of shape (N,), (N, 1), or (1, N) specifying encoding tensor shape for each volume separately. N corresponds to the number volumes in data. Options for elements in array: 'LTE', 'PTE', 'STE', 'CTE' corresponding to linear, planar, spherical, and "cigar-shaped" tensor encoding. Tensors are rotated so that linear and cigar tensors are aligned with the corresponding gradient direction and the planar tensor's normal is aligned with the corresponding gradient direction. Magnitude is scaled to match the b-value. 3. an array of shape (N,3,3) specifying the b-tensor of each volume exactly. N corresponds to the number volumes in data. No rotation or scaling is performed. Other Parameters ---------------- **kwargs : dict Other keyword inputs are passed to GradientTable. Returns ------- gradients : GradientTable A GradientTable with all the gradient information. See Also -------- GradientTable, gradient_table """ bvals = np.asarray(bvals, float) bvecs = np.asarray(bvecs, float) dwi_mask = bvals > b0_threshold # check that bvals is (N,) array and bvecs is (N, 3) unit vectors if bvals.ndim != 1 or bvecs.ndim != 2 or bvecs.shape[0] != bvals.shape[0]: raise ValueError( "bvals and bvecs should be (N,) and (N, 3) arrays " "respectively, where N is the number of diffusion " "gradients" ) # checking for negative bvals if b0_threshold < 0: raise ValueError("Negative bvals in the data are not feasible") # Upper bound for the b0_threshold if b0_threshold >= 200: warn("b0_threshold has a value > 199", stacklevel=2) # If all b-values are smaller or equal to the b0 threshold, it is assumed # that no thresholding is requested if any(mask_non_weighted_bvals(bvals, b0_threshold)): # checking for the correctness of bvals if b0_threshold < bvals.min(): warn( f"b0_threshold (value: {b0_threshold}) is too low, increase your " "b0_threshold. It should be higher than the lowest b0 value " f"({bvals.min()}).", stacklevel=2, ) bvecs = np.where(np.isnan(bvecs), 0, bvecs) bvecs_close_to_1 = abs(vector_norm(bvecs) - 1) <= atol if bvecs.shape[1] != 3: raise ValueError("bvecs should be (N, 3)") if not np.all(bvecs_close_to_1[dwi_mask]): raise ValueError( "The vectors in bvecs should be unit (The tolerance " "can be modified as an input parameter)" ) bvecs = np.where(bvecs_close_to_1[:, None], bvecs, 0) bvals = bvals * bvecs_close_to_1 gradients = bvals[:, None] * bvecs grad_table = GradientTable( gradients, b0_threshold=b0_threshold, btens=btens, **kwargs ) grad_table.bvals = bvals grad_table.bvecs = bvecs grad_table.b0s_mask = ~dwi_mask return grad_table
[docs] @warning_for_keywords() def gradient_table_from_qvals_bvecs( qvals, bvecs, big_delta, small_delta, *, b0_threshold=50, atol=1e-2 ): """A general function for creating diffusion MR gradients. It reads, loads and prepares scanner parameters like the b-values and b-vectors so that they can be useful during the reconstruction process. Parameters ---------- qvals : an array of shape (N,), q-value given in 1/mm bvecs : can be any of two options 1. an array of shape (N, 3) or (3, N) with the b-vectors. 2. a path for the file which contains an array like the previous. big_delta : float or array of shape (N,) acquisition pulse separation time in seconds small_delta : float acquisition pulse duration time in seconds b0_threshold : float All b-values with values less than or equal to `bo_threshold` are considered as b0s i.e. without diffusion weighting. atol : float All b-vectors need to be unit vectors up to a tolerance. Returns ------- gradients : GradientTable A GradientTable with all the gradient information. Examples -------- >>> from dipy.core.gradients import gradient_table_from_qvals_bvecs >>> qvals = 30. * np.ones(7) >>> big_delta = .03 # pulse separation of 30ms >>> small_delta = 0.01 # pulse duration of 10ms >>> qvals[0] = 0 >>> sq2 = np.sqrt(2) / 2 >>> bvecs = np.array([[0, 0, 0], ... [1, 0, 0], ... [0, 1, 0], ... [0, 0, 1], ... [sq2, sq2, 0], ... [sq2, 0, sq2], ... [0, sq2, sq2]]) >>> gt = gradient_table_from_qvals_bvecs(qvals, bvecs, ... big_delta, small_delta) Notes ----- 1. Often b0s (b-values which correspond to images without diffusion weighting) have 0 values however in some cases the scanner cannot provide b0s of an exact 0 value and it gives a bit higher values e.g. 6 or 12. This is the purpose of the b0_threshold in the __init__. 2. We assume that the minimum number of b-values is 7. 3. B-vectors should be unit vectors. """ qvals = np.asarray(qvals) bvecs = np.asarray(bvecs) if (bvecs.shape[1] > bvecs.shape[0]) and bvecs.shape[0] > 1: bvecs = bvecs.T bvals = (qvals * 2 * np.pi) ** 2 * (big_delta - small_delta / 3.0) return gradient_table_from_bvals_bvecs( bvals, bvecs, big_delta=big_delta, small_delta=small_delta, b0_threshold=b0_threshold, atol=atol, )
[docs] @warning_for_keywords() def gradient_table_from_gradient_strength_bvecs( gradient_strength, bvecs, big_delta, small_delta, *, b0_threshold=50, atol=1e-2 ): """A general function for creating diffusion MR gradients. It reads, loads and prepares scanner parameters like the b-values and b-vectors so that they can be useful during the reconstruction process. Parameters ---------- gradient_strength : an array of shape (N,), gradient strength given in T/mm bvecs : can be any of two options 1. an array of shape (N, 3) or (3, N) with the b-vectors. 2. a path for the file which contains an array like the previous. big_delta : float or array of shape (N,) acquisition pulse separation time in seconds small_delta : float acquisition pulse duration time in seconds b0_threshold : float All b-values with values less than or equal to `bo_threshold` are considered as b0s i.e. without diffusion weighting. atol : float All b-vectors need to be unit vectors up to a tolerance. Returns ------- gradients : GradientTable A GradientTable with all the gradient information. Examples -------- >>> from dipy.core.gradients import ( ... gradient_table_from_gradient_strength_bvecs) >>> gradient_strength = .03e-3 * np.ones(7) # clinical strength at 30 mT/m >>> big_delta = .03 # pulse separation of 30ms >>> small_delta = 0.01 # pulse duration of 10ms >>> gradient_strength[0] = 0 >>> sq2 = np.sqrt(2) / 2 >>> bvecs = np.array([[0, 0, 0], ... [1, 0, 0], ... [0, 1, 0], ... [0, 0, 1], ... [sq2, sq2, 0], ... [sq2, 0, sq2], ... [0, sq2, sq2]]) >>> gt = gradient_table_from_gradient_strength_bvecs( ... gradient_strength, bvecs, big_delta, small_delta) Notes ----- 1. Often b0s (b-values which correspond to images without diffusion weighting) have 0 values however in some cases the scanner cannot provide b0s of an exact 0 value and it gives a bit higher values e.g. 6 or 12. This is the purpose of the b0_threshold in the __init__. 2. We assume that the minimum number of b-values is 7. 3. B-vectors should be unit vectors. """ gradient_strength = np.asarray(gradient_strength) bvecs = np.asarray(bvecs) if (bvecs.shape[1] > bvecs.shape[0]) and bvecs.shape[0] > 1: bvecs = bvecs.T qvals = gradient_strength * small_delta * WATER_GYROMAGNETIC_RATIO / (2 * np.pi) bvals = (qvals * 2 * np.pi) ** 2 * (big_delta - small_delta / 3.0) return gradient_table_from_bvals_bvecs( bvals, bvecs, big_delta=big_delta, small_delta=small_delta, b0_threshold=b0_threshold, atol=atol, )
[docs] @warning_for_keywords() def gradient_table( bvals, *, bvecs=None, big_delta=None, small_delta=None, b0_threshold=50, atol=1e-2, btens=None, ): """A general function for creating diffusion MR gradients. It reads, loads and prepares scanner parameters like the b-values and b-vectors so that they can be useful during the reconstruction process. Parameters ---------- bvals : can be any of the four options 1. an array of shape (N,) or (1, N) or (N, 1) with the b-values. 2. a path for the file which contains an array like the above (1). 3. an array of shape (N, 4) or (4, N). Then this parameter is considered to be a b-table which contains both bvals and bvecs. In this case the next parameter is skipped. 4. a path for the file which contains an array like the one at (3). bvecs : can be any of two options 1. an array of shape (N, 3) or (3, N) with the b-vectors. 2. a path for the file which contains an array like the previous. big_delta : float acquisition pulse separation time in seconds (default None) small_delta : float acquisition pulse duration time in seconds (default None) b0_threshold : float All b-values with values less than or equal to `bo_threshold` are considered as b0s i.e. without diffusion weighting. atol : float All b-vectors need to be unit vectors up to a tolerance. btens : can be any of three options 1. a string specifying the shape of the encoding tensor for all volumes in data. Options: 'LTE', 'PTE', 'STE', 'CTE' corresponding to linear, planar, spherical, and "cigar-shaped" tensor encoding. Tensors are rotated so that linear and cigar tensors are aligned with the corresponding gradient direction and the planar tensor's normal is aligned with the corresponding gradient direction. Magnitude is scaled to match the b-value. 2. an array of strings of shape (N,), (N, 1), or (1, N) specifying encoding tensor shape for each volume separately. N corresponds to the number volumes in data. Options for elements in array: 'LTE', 'PTE', 'STE', 'CTE' corresponding to linear, planar, spherical, and "cigar-shaped" tensor encoding. Tensors are rotated so that linear and cigar tensors are aligned with the corresponding gradient direction and the planar tensor's normal is aligned with the corresponding gradient direction. Magnitude is scaled to match the b-value. 3. an array of shape (N,3,3) specifying the b-tensor of each volume exactly. N corresponds to the number volumes in data. No rotation or scaling is performed. Returns ------- gradients : GradientTable A GradientTable with all the gradient information. Examples -------- >>> from dipy.core.gradients import gradient_table >>> bvals = 1500 * np.ones(7) >>> bvals[0] = 0 >>> sq2 = np.sqrt(2) / 2 >>> bvecs = np.array([[0, 0, 0], ... [1, 0, 0], ... [0, 1, 0], ... [0, 0, 1], ... [sq2, sq2, 0], ... [sq2, 0, sq2], ... [0, sq2, sq2]]) >>> gt = gradient_table(bvals, bvecs=bvecs) >>> gt.bvecs.shape == bvecs.shape True >>> gt = gradient_table(bvals, bvecs=bvecs.T) >>> gt.bvecs.shape == bvecs.T.shape False Notes ----- 1. Often b0s (b-values which correspond to images without diffusion weighting) have 0 values however in some cases the scanner cannot provide b0s of an exact 0 value and it gives a bit higher values e.g. 6 or 12. This is the purpose of the b0_threshold in the __init__. 2. We assume that the minimum number of b-values is 7. 3. B-vectors should be unit vectors. """ # If you provided strings with full paths, we go and load those from # the files: if isinstance(bvals, str): bvals, _ = io.read_bvals_bvecs(bvals, None) if isinstance(bvecs, str): _, bvecs = io.read_bvals_bvecs(None, bvecs) bvals = np.asarray(bvals) # If bvecs is None we expect bvals to be an (N, 4) or (4, N) array. if bvecs is None: if bvals.shape[-1] == 4: bvecs = bvals[:, 1:] bvals = np.squeeze(bvals[:, 0]) elif bvals.shape[0] == 4: bvecs = bvals[1:, :].T bvals = np.squeeze(bvals[0, :]) else: raise ValueError( "input should be bvals and bvecs OR an (N, 4)" " array containing both bvals and bvecs" ) else: bvecs = np.asarray(bvecs) if bvecs.shape[1] != 3 and bvecs.shape[0] > 1: bvecs = bvecs.T return gradient_table_from_bvals_bvecs( bvals, bvecs, big_delta=big_delta, small_delta=small_delta, b0_threshold=b0_threshold, atol=atol, btens=btens, )
[docs] @warning_for_keywords() def reorient_bvecs(gtab, affines, *, atol=1e-2): """Reorient the directions in a GradientTable. When correcting for motion, rotation of the diffusion-weighted volumes might cause systematic bias in rotationally invariant measures, such as FA and MD, and also cause characteristic biases in tractography, unless the gradient directions are appropriately reoriented to compensate for this effect :footcite:p:`Leemans2009`. Parameters ---------- gtab : GradientTable The nominal gradient table with which the data were acquired. affines : list or ndarray of shape (4, 4, n) or (3, 3, n) Each entry in this list or array contain either an affine transformation (4,4) or a rotation matrix (3, 3). In both cases, the transformations encode the rotation that was applied to the image corresponding to one of the non-zero gradient directions (ordered according to their order in `gtab.bvecs[~gtab.b0s_mask]`) atol: see gradient_table() Returns ------- gtab : a GradientTable class instance with the reoriented directions References ---------- .. footbibliography:: """ if isinstance(affines, list): affines = np.stack(affines, axis=-1) if affines.shape[0] != affines.shape[1]: msg = """reorient_bvecs has changed to require affines as (4, 4, n) or (3, 3, n). Shape of (n, 4, 4) or (n, 3, 3) is deprecated and will fail in the future.""" warn(msg, UserWarning, stacklevel=2) affines = np.moveaxis(affines, 0, -1) new_bvecs = gtab.bvecs[~gtab.b0s_mask] if new_bvecs.shape[0] != affines.shape[-1]: e_s = "Number of affine transformations must match number of " e_s += "non-zero gradients" raise ValueError(e_s) # moving axis to make life easier affines = np.moveaxis(affines, -1, 0) for i, aff in enumerate(affines): if aff.shape == (4, 4): # This must be an affine! # Remove the translation component: aff = aff[:3, :3] # Decompose into rotation and scaling components: R, S = polar(aff) Rinv = inv(R) # Apply the inverse of the rotation to the corresponding gradient # direction: new_bvecs[i] = np.dot(Rinv, new_bvecs[i]) return_bvecs = np.zeros(gtab.bvecs.shape) return_bvecs[~gtab.b0s_mask] = new_bvecs return gradient_table( gtab.bvals, bvecs=return_bvecs, big_delta=gtab.big_delta, small_delta=gtab.small_delta, b0_threshold=gtab.b0_threshold, atol=atol, )
[docs] @warning_for_keywords() def generate_bvecs(N, *, iters=5000, rng=None): """Generates N bvectors. Uses dipy.core.sphere.disperse_charges to model electrostatic repulsion on a unit sphere. Parameters ---------- N : int The number of bvectors to generate. This should be equal to the number of bvals used. iters : int Number of iterations to run. rng : numpy.random.Generator, optional Numpy's random number generator. If None, the generator is created. Default is None. Returns ------- bvecs : (N,3) ndarray The generated directions, represented as a unit vector, of each gradient. """ if rng is None: rng = np.random.default_rng() theta = np.pi * rng.random(N) phi = 2 * np.pi * rng.random(N) hsph_initial = HemiSphere(theta=theta, phi=phi) hsph_updated, potential = disperse_charges(hsph_initial, iters) bvecs = hsph_updated.vertices return bvecs
[docs] @warning_for_keywords() def round_bvals(bvals, *, bmag=None): """ "This function rounds the b-values Parameters ---------- bvals : ndarray Array containing the b-values bmag : int The order of magnitude to round the b-values. If not given b-values will be rounded relative to the order of magnitude $bmag = (bmagmax - 1)$, where bmaxmag is the magnitude order of the larger b-value. Returns ------- rbvals : ndarray Array containing the rounded b-values """ if bmag is None: bmag = int(np.log10(np.max(bvals))) - 1 b = bvals / (10**bmag) # normalize b units return b.round() * (10**bmag)
[docs] @warning_for_keywords() def unique_bvals_tolerance(bvals, *, tol=20): """Gives the unique b-values of the data, within a tolerance gap The b-values must be regrouped in clusters easily separated by a distance greater than the tolerance gap. If all the b-values of a cluster fit within the tolerance gap, the highest b-value is kept. Parameters ---------- bvals : ndarray Array containing the b-values tol : int The tolerated gap between the b-values to extract and the actual b-values. Returns ------- ubvals : ndarray Array containing the unique b-values using the median value for each cluster """ b = np.unique(bvals) ubvals = [] lower_part = np.where(b <= b[0] + tol)[0] upper_part = np.where( np.logical_and(b <= b[lower_part[-1]] + tol, b > b[lower_part[-1]]) )[0] ubvals.append(b[lower_part[-1]]) if len(upper_part) != 0: b_index = upper_part[-1] + 1 else: b_index = lower_part[-1] + 1 while b_index != len(b): lower_part = np.where( np.logical_and(b <= b[b_index] + tol, b > b[b_index - 1]) )[0] upper_part = np.where( np.logical_and(b <= b[lower_part[-1]] + tol, b > b[lower_part[-1]]) )[0] ubvals.append(b[lower_part[-1]]) if len(upper_part) != 0: b_index = upper_part[-1] + 1 else: b_index = lower_part[-1] + 1 # Checking for overlap with get_bval_indices for i, ubval in enumerate(ubvals[:-1]): indices_1 = get_bval_indices(bvals, ubval, tol=tol) indices_2 = get_bval_indices(bvals, ubvals[i + 1], tol=tol) if len(np.intersect1d(indices_1, indices_2)) != 0: msg = """There is overlap in clustering of b-values. The tolerance factor might be too high.""" warn(msg, UserWarning, stacklevel=2) return np.asarray(ubvals)
[docs] @warning_for_keywords() def get_bval_indices(bvals, bval, *, tol=20): """ Get indices where the b-value is `bval` Parameters ---------- bvals: ndarray Array containing the b-values bval: float or int b-value to extract indices tol: int The tolerated gap between the b-values to extract and the actual b-values. Returns ------- Array of indices where the b-value is `bval` """ return np.where(np.logical_and(bvals <= bval + tol, bvals >= bval - tol))[0]
[docs] @warning_for_keywords() def unique_bvals_magnitude(bvals, *, bmag=None, rbvals=False): """This function gives the unique rounded b-values of the data Parameters ---------- bvals : ndarray Array containing the b-values bmag : int The order of magnitude that the bvalues have to differ to be considered an unique b-value. B-values are also rounded up to this order of magnitude. Default: derive this value from the maximal b-value provided: $bmag=log_{10}(max(bvals)) - 1$. rbvals : bool, optional If True function also returns all individual rounded b-values. Returns ------- ubvals : ndarray Array containing the rounded unique b-values """ b = round_bvals(bvals, bmag=bmag) if rbvals: return np.unique(b), b return np.unique(b)
[docs] @warning_for_keywords() def check_multi_b(gtab, n_bvals, *, non_zero=True, bmag=None): """ Check if you have enough different b-values in your gradient table Parameters ---------- gtab : GradientTable class instance. Gradient table. n_bvals : int The number of different b-values you are checking for. non_zero : bool Whether to check only non-zero bvalues. In this case, we will require at least `n_bvals` *non-zero* b-values (where non-zero is defined depending on the `gtab` object's `b0_threshold` attribute) bmag : int The order of magnitude of the b-values used. The function will normalize the b-values relative $10^{bmag}$. Default: derive this value from the maximal b-value provided: $bmag=log_{10}(max(bvals)) - 1$. Returns ------- bool : Whether there are at least `n_bvals` different b-values in the gradient table used. """ bvals = gtab.bvals.copy() if non_zero: bvals = bvals[~gtab.b0s_mask] uniqueb = unique_bvals_magnitude(bvals, bmag=bmag) if uniqueb.shape[0] < n_bvals: return False else: return True
def _btens_to_params_2d(btens_2d, ztol): """Compute trace, anisotropy and asymmetry parameters from a single b-tensor Auxiliary function where calculation of `bval`, bdelta` and `b_eta` from a (3,3) b-tensor takes place. The main function `btens_to_params` then wraps around this to enable support of input (N, 3, 3) arrays, where N = number of b-tensors Parameters ---------- btens_2d : (3, 3) numpy.ndarray input b-tensor ztol : float Any parameters smaller than this value are considered to be 0 Returns ------- bval: float b-value (trace) bdelta: float normalized tensor anisotropy bdelta: float tensor asymmetry Notes ----- Implementation following :footcite:t:`Topgaard2016`. References ---------- .. footbibliography:: """ btens_2d[abs(btens_2d) <= ztol] = 0 evals = np.real(np.linalg.eig(btens_2d)[0]) bval = np.sum(evals) bval_is_zero = np.abs(bval) <= ztol if bval_is_zero: bval = 0 bdelta = 0 b_eta = 0 else: lambda_iso = (1 / 3) * bval diff_lambdas = np.abs(evals - lambda_iso) evals_zzxxyy = evals[np.argsort(diff_lambdas)[::-1]] lambda_zz = evals_zzxxyy[0] lambda_xx = evals_zzxxyy[1] lambda_yy = evals_zzxxyy[2] bdelta = (1 / (3 * lambda_iso)) * (lambda_zz - ((lambda_yy + lambda_xx) / 2)) if np.abs(bdelta) <= ztol: bdelta = 0 yyxx_diff = lambda_yy - lambda_xx if abs(yyxx_diff) <= np.spacing(1): yyxx_diff = 0 b_eta = yyxx_diff / (2 * lambda_iso * bdelta + np.spacing(1)) if np.abs(b_eta) <= b_eta: b_eta = 0 return float(bval), float(bdelta), float(b_eta)
[docs] @warning_for_keywords() def btens_to_params(btens, *, ztol=1e-10): r"""Compute trace, anisotropy and asymmetry parameters from b-tensors. Parameters ---------- btens : (3, 3) OR (N, 3, 3) numpy.ndarray input b-tensor, or b-tensors, where N = number of b-tensors ztol : float Any parameters smaller than this value are considered to be 0 Returns ------- bval: numpy.ndarray b-value(s) (trace(s)) bdelta: numpy.ndarray normalized tensor anisotropy(s) b_eta: numpy.ndarray tensor asymmetry(s) Notes ----- This function can be used to get b-tensor parameters directly from the GradientTable `btens` attribute. Examples -------- >>> lte = np.array([[1, 0, 0], [0, 0, 0], [0, 0, 0]]) >>> bval, bdelta, b_eta = btens_to_params(lte) >>> print("bval={}; bdelta={}; b_eta={}".format(bdelta, bval, b_eta)) bval=[ 1.]; bdelta=[ 1.]; b_eta=[ 0.] """ # Bad input checks value_error_msg = ( "`btens` must be a 2D or 3D numpy array, respectively" " with (3, 3) or (N, 3, 3) shape, where N corresponds" " to the number of b-tensors" ) if not isinstance(btens, np.ndarray): raise ValueError(value_error_msg) nd = np.ndim(btens) if nd == 2: btens_shape = btens.shape elif nd == 3: btens_shape = btens.shape[1:] else: raise ValueError(value_error_msg) if not btens_shape == (3, 3): raise ValueError(value_error_msg) # Reshape so that loop below works when only one input b-tensor is provided if nd == 2: btens = btens.reshape((1, 3, 3)) # Pre-allocate n_btens = btens.shape[0] bval = np.empty(n_btens) bdelta = np.empty(n_btens) b_eta = np.empty(n_btens) # Loop over b-tensor(s) for i in range(btens.shape[0]): i_btens = btens[i, :, :] i_bval, i_bdelta, i_b_eta = _btens_to_params_2d(i_btens, ztol) bval[i] = i_bval bdelta[i] = i_bdelta b_eta[i] = i_b_eta return bval, bdelta, b_eta
[docs] def params_to_btens(bval, bdelta, b_eta): """Compute b-tensor from trace, anisotropy and asymmetry parameters. Parameters ---------- bval: int or float b-value (>= 0) bdelta: int or float normalized tensor anisotropy (>= -0.5 and <= 1) b_eta: int or float tensor asymmetry (>= 0 and <= 1) Returns ------- (3, 3) numpy.ndarray output b-tensor Notes ----- Implements eq. 7.11. p. 231 in :footcite:p:`Topgaard2016`. References ---------- .. footbibliography:: """ # Check input times are OK expected_input_types = (float, int) input_types_all_ok = ( isinstance(bval, expected_input_types) and isinstance(bdelta, expected_input_types) and isinstance(b_eta, expected_input_types) ) if not input_types_all_ok: s = [x.__name__ for x in expected_input_types] it_msg = f"All input types should any of: {s}" raise ValueError(it_msg) # Check input values within expected ranges if bval < 0: raise ValueError("`bval` must be >= 0") if not -0.5 <= bdelta <= 1: raise ValueError("`delta` must be >= -0.5 and <= 1") if not 0 <= b_eta <= 1: raise ValueError("`b_eta` must be >= 0 and <= 1") m1 = np.array([[-1, 0, 0], [0, -1, 0], [0, 0, 2]]) m2 = np.array([[-1, 0, 0], [0, 1, 0], [0, 0, 0]]) btens = bval / 3 * (np.eye(3) + bdelta * (m1 + b_eta * m2)) return btens
[docs] def ornt_mapping(ornt1, ornt2): """Calculate the mapping needing to get from orn1 to orn2.""" mapping = np.empty((len(ornt1), 2), "int") mapping[:, 0] = -1 A = ornt1[:, 0].argsort() B = ornt2[:, 0].argsort() mapping[B, 0] = A assert (mapping[:, 0] != -1).all() sign = ornt2[:, 1] * ornt1[mapping[:, 0], 1] mapping[:, 1] = sign return mapping
[docs] @warning_for_keywords() def reorient_vectors(bvecs, current_ornt, new_ornt, *, axis=0): """Change the orientation of gradients or other vectors. Moves vectors, storted along axis, from current_ornt to new_ornt. For example the vector [x, y, z] in "RAS" will be [-x, -y, z] in "LPS". R: Right A: Anterior S: Superior L: Left P: Posterior I: Inferior """ if isinstance(current_ornt, str): current_ornt = orientation_from_string(current_ornt) if isinstance(new_ornt, str): new_ornt = orientation_from_string(new_ornt) n = bvecs.shape[axis] if current_ornt.shape != (n, 2) or new_ornt.shape != (n, 2): raise ValueError("orientations do not match") bvecs = np.asarray(bvecs) mapping = ornt_mapping(current_ornt, new_ornt) output = bvecs.take(mapping[:, 0], axis) out_view = np.rollaxis(output, axis, output.ndim) out_view *= mapping[:, 1] return output
[docs] @warning_for_keywords() def reorient_on_axis(bvecs, current_ornt, new_ornt, *, axis=0): if isinstance(current_ornt, str): current_ornt = orientation_from_string(current_ornt) if isinstance(new_ornt, str): new_ornt = orientation_from_string(new_ornt) n = bvecs.shape[axis] if current_ornt.shape != (n, 2) or new_ornt.shape != (n, 2): raise ValueError("orientations do not match") mapping = ornt_mapping(current_ornt, new_ornt) order = [slice(None)] * bvecs.ndim order[axis] = mapping[:, 0] shape = [1] * bvecs.ndim shape[axis] = -1 sign = mapping[:, 1] sign.shape = shape output = bvecs[order] output *= sign return output
[docs] def orientation_from_string(string_ornt): """Return an array representation of an ornt string.""" orientation_dict = { "r": (0, 1), "l": (0, -1), "a": (1, 1), "p": (1, -1), "s": (2, 1), "i": (2, -1), } ornt = tuple(orientation_dict[ii] for ii in string_ornt.lower()) ornt = np.array(ornt) if _check_ornt(ornt): msg = string_ornt + " does not seem to be a valid orientation string" raise ValueError(msg) return ornt
[docs] def orientation_to_string(ornt): """Return a string representation of a 3d ornt.""" if _check_ornt(ornt): msg = repr(ornt) + " does not seem to be a valid orientation" raise ValueError(msg) orientation_dict = { (0, 1): "r", (0, -1): "l", (1, 1): "a", (1, -1): "p", (2, 1): "s", (2, -1): "i", } ornt_string = "" for ii in ornt: ornt_string += orientation_dict[(ii[0], ii[1])] return ornt_string
def _check_ornt(ornt): uniq = np.unique(ornt[:, 0]) if len(uniq) != len(ornt): print(len(uniq)) return True uniq = np.unique(ornt[:, 1]) if tuple(uniq) not in {(-1, 1), (-1,), (1,)}: print(tuple(uniq)) return True