Source code for dipy.core.sphere

import warnings

import numpy as np
from scipy import optimize

from dipy.core.geometry import cart2sphere, sphere2cart, vector_norm
from dipy.core.onetime import auto_attr
from dipy.reconst.recspeed import remove_similar_vertices
from dipy.testing.decorators import warning_for_keywords

__all__ = ["Sphere", "HemiSphere", "faces_from_sphere_vertices", "unique_edges"]


def _all_specified(*args):
    for a in args:
        if a is None:
            return False
    return True


def _some_specified(*args):
    for a in args:
        if a is not None:
            return True
    return False


[docs] def faces_from_sphere_vertices(vertices): """ Triangulate a set of vertices on the sphere. Parameters ---------- vertices : (M, 3) ndarray XYZ coordinates of vertices on the sphere. Returns ------- faces : (N, 3) ndarray Indices into vertices; forms triangular faces. """ from scipy.spatial import Delaunay faces = Delaunay(vertices).convex_hull if len(vertices) < 2**16: return np.asarray(faces, np.uint16) else: return faces
[docs] @warning_for_keywords() def unique_edges(faces, *, return_mapping=False): """Extract all unique edges from given triangular faces. Parameters ---------- faces : (N, 3) ndarray Vertex indices forming triangular faces. return_mapping : bool If true, a mapping to the edges of each face is returned. Returns ------- edges : (N, 2) ndarray Unique edges. mapping : (N, 3) For each face, [x, y, z], a mapping to its edges [a, b, c]. .. code-block:: text y /\ / \ a/ \b / \ / \ /__________\ x c z """ faces = np.asarray(faces) edges = np.concatenate([faces[:, 0:2], faces[:, 1:3], faces[:, ::2]]) if return_mapping: ue, inverse = unique_sets(edges, return_inverse=True) return ue, inverse.reshape((3, -1)).T else: return unique_sets(edges)
[docs] @warning_for_keywords() def unique_sets(sets, *, return_inverse=False): """Remove duplicate sets. Parameters ---------- sets : array (N, k) N sets of size k. return_inverse : bool If True, also returns the indices of unique_sets that can be used to reconstruct `sets` (the original ordering of each set may not be preserved). Returns ------- unique_sets : array Unique sets. inverse : array (N,) The indices to reconstruct `sets` from `unique_sets`. """ sets = np.sort(sets, 1) order = np.lexsort(sets.T) sets = sets[order] flag = np.ones(len(sets), "bool") flag[1:] = (sets[1:] != sets[:-1]).any(-1) uniqsets = sets[flag] if return_inverse: inverse = np.empty_like(order) inverse[order] = np.arange(len(order)) index = flag.cumsum() - 1 return uniqsets, index[inverse] else: return uniqsets
[docs] class Sphere: """Points on the unit sphere. The sphere can be constructed using one of three conventions:: Sphere(x, y, z) Sphere(xyz=xyz) Sphere(theta=theta, phi=phi) Parameters ---------- x, y, z : 1-D array_like Vertices as x-y-z coordinates. theta, phi : 1-D array_like Vertices as spherical coordinates. Theta and phi are the inclination and azimuth angles respectively. xyz : (N, 3) ndarray Vertices as x-y-z coordinates. faces : (N, 3) ndarray Indices into vertices that form triangular faces. If unspecified, the faces are computed using a Delaunay triangulation. edges : (N, 2) ndarray Edges between vertices. If unspecified, the edges are derived from the faces. """ @warning_for_keywords() def __init__( self, *, x=None, y=None, z=None, theta=None, phi=None, xyz=None, faces=None, edges=None, ): all_specified = ( _all_specified(x, y, z) + _all_specified(xyz) + _all_specified(theta, phi) ) one_complete = ( _some_specified(x, y, z) + _some_specified(xyz) + _some_specified(theta, phi) ) if not (all_specified == 1 and one_complete == 1): raise ValueError( "Sphere must be constructed using either " "(x,y,z), (theta, phi) or xyz." ) if edges is not None and faces is None: raise ValueError( "Either specify both faces and edges, only faces, or neither." ) if edges is not None: self.edges = np.asarray(edges) if faces is not None: self.faces = np.asarray(faces) if theta is not None: self.theta = np.asarray(theta) if self.theta.ndim < 1: self.theta = np.reshape(self.theta, (1,)) self.phi = np.asarray(phi) if self.phi.ndim < 1: self.phi = np.reshape(self.phi, (1,)) return if xyz is not None: xyz = np.asarray(xyz) x, y, z = xyz.T x, y, z = (np.asarray(t) for t in (x, y, z)) r, self.theta, self.phi = cart2sphere(x, y, z) if not np.allclose(r, 1): warnings.warn("Vertices are not on the unit sphere.", stacklevel=2)
[docs] @auto_attr def vertices(self): return np.column_stack(sphere2cart(1, self.theta, self.phi))
@property def x(self): return self.vertices[:, 0] @property def y(self): return self.vertices[:, 1] @property def z(self): return self.vertices[:, 2]
[docs] @auto_attr def faces(self): faces = faces_from_sphere_vertices(self.vertices) return faces
[docs] @auto_attr def edges(self): return unique_edges(self.faces)
[docs] @warning_for_keywords() def subdivide(self, *, n=1): r"""Subdivides each face of the sphere into four new faces. New vertices are created at a, b, and c. Then each face [x, y, z] is divided into faces [x, a, c], [y, a, b], [z, b, c], and [a, b, c]. .. code-block:: text y /\ / \ a/____\b /\ /\ / \ / \ /____\/____\ x c z Parameters ---------- n : int, optional The number of subdivisions to perform. Returns ------- new_sphere : Sphere The subdivided sphere. """ vertices = self.vertices faces = self.faces for _ in range(n): edges, mapping = unique_edges(faces, return_mapping=True) new_vertices = vertices[edges].sum(1) new_vertices /= vector_norm(new_vertices, keepdims=True) mapping += len(vertices) vertices = np.vstack([vertices, new_vertices]) x, y, z = faces.T a, b, c = mapping.T face1 = np.column_stack([x, a, c]) face2 = np.column_stack([y, b, a]) face3 = np.column_stack([z, c, b]) face4 = mapping faces = np.concatenate([face1, face2, face3, face4]) if len(vertices) < 2**16: faces = np.asarray(faces, dtype="uint16") return Sphere(xyz=vertices, faces=faces)
[docs] def find_closest(self, xyz): """ Find the index of the vertex in the Sphere closest to the input vector Parameters ---------- xyz : array-like, 3 elements A unit vector Returns ------- idx : int The index into the Sphere.vertices array that gives the closest vertex (in angle). """ cos_sim = np.dot(self.vertices, xyz) return np.argmax(cos_sim)
[docs] class HemiSphere(Sphere): """Points on the unit sphere. A HemiSphere is similar to a Sphere but it takes antipodal symmetry into account. Antipodal symmetry means that point v on a HemiSphere is the same as the point -v. Duplicate points are discarded when constructing a HemiSphere (including antipodal duplicates). `edges` and `faces` are remapped to the remaining points as closely as possible. The HemiSphere can be constructed using one of three conventions:: HemiSphere(x, y, z) HemiSphere(xyz=xyz) HemiSphere(theta=theta, phi=phi) Parameters ---------- x, y, z : 1-D array_like Vertices as x-y-z coordinates. theta, phi : 1-D array_like Vertices as spherical coordinates. Theta and phi are the inclination and azimuth angles respectively. xyz : (N, 3) ndarray Vertices as x-y-z coordinates. faces : (N, 3) ndarray Indices into vertices that form triangular faces. If unspecified, the faces are computed using a Delaunay triangulation. edges : (N, 2) ndarray Edges between vertices. If unspecified, the edges are derived from the faces. tol : float Angle in degrees. Vertices that are less than tol degrees apart are treated as duplicates. See Also -------- Sphere """ @warning_for_keywords() def __init__( self, *, x=None, y=None, z=None, theta=None, phi=None, xyz=None, faces=None, edges=None, tol=1e-5, ): """Create a HemiSphere from points""" sphere = Sphere(x=x, y=y, z=z, theta=theta, phi=phi, xyz=xyz) uniq_vertices, mapping = remove_similar_vertices( sphere.vertices, tol, return_mapping=True ) uniq_vertices *= 1 - 2 * (uniq_vertices[:, -1:] < 0) if faces is not None: faces = np.asarray(faces) faces = unique_sets(mapping[faces]) if edges is not None: edges = np.asarray(edges) edges = unique_sets(mapping[edges]) Sphere.__init__(self, xyz=uniq_vertices, edges=edges, faces=faces)
[docs] @classmethod @warning_for_keywords() def from_sphere(cls, sphere, *, tol=1e-5): """Create instance from a Sphere""" return cls( theta=sphere.theta, phi=sphere.phi, edges=sphere.edges, faces=sphere.faces, tol=tol, )
[docs] def mirror(self): """Create a full Sphere from a HemiSphere""" n = len(self.vertices) vertices = np.vstack([self.vertices, -self.vertices]) edges = np.vstack([self.edges, n + self.edges]) _switch_vertex(edges[:, 0], edges[:, 1], vertices) faces = np.vstack([self.faces, n + self.faces]) _switch_vertex(faces[:, 0], faces[:, 1], vertices) _switch_vertex(faces[:, 0], faces[:, 2], vertices) return Sphere(xyz=vertices, edges=edges, faces=faces)
[docs] @auto_attr def faces(self): vertices = np.vstack([self.vertices, -self.vertices]) faces = faces_from_sphere_vertices(vertices) return unique_sets(faces % len(self.vertices))
[docs] @warning_for_keywords() def subdivide(self, *, n=1): """Create a more subdivided HemiSphere See Sphere.subdivide for full documentation. """ sphere = self.mirror() sphere = sphere.subdivide(n=n) return HemiSphere.from_sphere(sphere)
[docs] def find_closest(self, xyz): """ Find the index of the vertex in the Sphere closest to the input vector, taking into account antipodal symmetry Parameters ---------- xyz : array-like, 3 elements A unit vector Returns ------- idx : int The index into the Sphere.vertices array that gives the closest vertex (in angle). """ cos_sim = abs(np.dot(self.vertices, xyz)) return np.argmax(cos_sim)
def _switch_vertex(index1, index2, vertices): """When we mirror an edge (a, b). We can either create (a, b) and (a', b') OR (a, b') and (a', b). The angles of edges (a, b) and (a, b') are supplementary, so we choose the two new edges such that their angles are less than 90 degrees. """ n = len(vertices) A = vertices[index1] B = vertices[index2] is_far = (A * B).sum(-1) < 0 index2[is_far] = index2[is_far] + (n / 2.0) index2 %= n def _get_forces(charges): r"""Given a set of charges on the surface of the sphere gets total force those charges exert on each other. The force exerted by one charge on another is given by Coulomb's law. For this simulation we use charges of equal magnitude so this force can be written as $\vec{r}/r^3$, up to a constant factor, where $\vec{r}$ is the separation of the two charges and $r$ is the magnitude of $\vec{r}$. Forces are additive so the total force on each of the charges is the sum of the force exerted by each other charge in the system. Charges do not exert a force on themselves. The electric potential can similarly be written as $1/r$ and is also additive. """ all_charges = np.concatenate((charges, -charges)) all_charges = all_charges[:, None] r = charges - all_charges r_mag = np.sqrt((r * r).sum(-1))[:, :, None] with warnings.catch_warnings(): warnings.simplefilter("ignore") force = r / r_mag**3 potential = 1.0 / r_mag d = np.arange(len(charges)) force[d, d] = 0 force = force.sum(0) force_r_comp = (charges * force).sum(-1)[:, None] f_theta = force - force_r_comp * charges potential[d, d] = 0 potential = 2 * potential.sum() return f_theta, potential
[docs] @warning_for_keywords() def disperse_charges(hemi, iters, *, const=0.2): """Models electrostatic repulsion on the unit sphere Places charges on a sphere and simulates the repulsive forces felt by each one. Allows the charges to move for some number of iterations and returns their final location as well as the total potential of the system at each step. Parameters ---------- hemi : HemiSphere Points on a unit sphere. iters : int Number of iterations to run. const : float Using a smaller const could provide a more accurate result, but will need more iterations to converge. Returns ------- hemi : HemiSphere Distributed points on a unit sphere. potential : ndarray The electrostatic potential at each iteration. This can be useful to check if the repulsion converged to a minimum. Notes ----- This function is meant to be used with diffusion imaging so antipodal symmetry is assumed. Therefore, each charge must not only be unique, but if there is a charge at +x, there cannot be a charge at -x. These are treated as the same location and because the distance between the two charges will be zero, the result will be unstable. """ if not isinstance(hemi, HemiSphere): raise ValueError("expecting HemiSphere") charges = hemi.vertices forces, v = _get_forces(charges) force_mag = np.sqrt((forces * forces).sum()) const = const / force_mag.max() potential = np.empty(iters) v_min = v for ii in range(iters): new_charges = charges + forces * const norms = np.sqrt((new_charges**2).sum(-1)) new_charges /= norms[:, None] new_forces, v = _get_forces(new_charges) if v <= v_min: charges = new_charges forces = new_forces potential[ii] = v_min = v else: const /= 2.0 potential[ii] = v_min return HemiSphere(xyz=charges), potential
[docs] @warning_for_keywords() def fibonacci_sphere(n_points, *, hemisphere=False, randomize=True, rng=None): """ Generate points on the surface of a sphere using Fibonacci Spiral. Parameters ---------- n_points : int The number of points to generate on the sphere surface. hemisphere : bool, optional If True, generate points only on the upper hemisphere. Default is False. randomize : bool, optional If True, randomize the starting point on the sphere. rng : np.random.Generator, optional If None creates random generator in function. Returns ------- points : ndarray An array of 3D points representing coordinates on the sphere surface. """ if not isinstance(n_points, int) or n_points <= 4: raise ValueError("Number of points must be a positive integer greater than 4.") random_shift = 0 if randomize: random_generator = rng or np.random.default_rng() random_shift = random_generator.integers(0, n_points) indices = np.arange(n_points) increment = np.pi * (3.0 - np.sqrt(5.0)) if not hemisphere: offset = 2.0 / n_points y = ((indices * offset) - 1) + (offset / 2) else: offset = 1.0 / n_points y = (indices * offset) + (offset / 2) r = np.sqrt(1 - y**2) phi = ((indices + random_shift) % n_points) * increment x = np.cos(phi) * r z = np.sin(phi) * r points = np.column_stack((x, y, z)) if n_points < 30 and hemisphere: points_updated = disperse_charges_alt(points, 1000) return points_updated return points
def _equality_constraints(vects): """Spherical equality constraint. Returns 0 if vects lies on the unit sphere. Note that a flattened array is returned because `scipy.optimize` expects a 1-D array. Parameters ---------- vects : array-like shape (N * 3) Points on the sphere. Returns ------- array-like (N,) Difference between squared vector norms and 1. """ N = vects.shape[0] // 3 vects = vects.reshape((N, 3)) return (vects**2).sum(1) - 1.0 def _grad_equality_constraints(vects): r"""Return normals to the surface constraint (which corresponds to the gradient of the implicit function). Parameters ---------- vects : array-like (N * 3) Points on the sphere. Returns ------- array-like (N, N * 3) grad[i, j] contains :math:`\partial f_i / \partial x_j`. """ N = vects.shape[0] // 3 vects = vects.reshape((N, 3)) vects = (vects.T / np.sqrt((vects**2).sum(1))).T grad = np.zeros((N, N * 3)) for i in range(3): grad[:, i * N : (i + 1) * N] = np.diag(vects[:, i]) return grad @warning_for_keywords() def _get_forces_alt(vects, *, alpha=2.0, **kwargs): r"""Electrostatic-repulsion objective function. The alpha parameter controls the power repulsion (energy varies as $1 / r^\alpha$) :footcite:p:`Papadakis2000`. For $\alpha = 1.0$, this corresponds to electrostatic interaction energy. The weights ensure equal importance of each shell to the objective function :footcite:p:`Cook2007`, :footcite:p:`Caruyer2013`. Parameters ---------- vects : array-like (N * 3,) Points on the sphere. alpha : float Controls the power of the repulsion. Default is 1.0. weights : array-like (N, N) Weight values to the electrostatic energy. Returns ------- energy : float Sum of all interactions between any two vectors. References ---------- .. footbibliography:: """ nb_points = vects.shape[0] // 3 weights = kwargs.get("weights", np.ones((nb_points, nb_points))) charges = vects.reshape((nb_points, 3)) all_charges = np.concatenate((charges, -charges)) all_charges = all_charges[:, None] r = charges - all_charges r_mag = np.sqrt((r * r).sum(-1))[:, :, None] with warnings.catch_warnings(): warnings.simplefilter("ignore") potential = 1 / r_mag**alpha d = np.arange(len(charges)) potential[d, d] = 0 potential = potential[:nb_points] + potential[nb_points:] potential = weights * potential.sum(-1) potential = potential.sum() return potential @warning_for_keywords() def _get_grad_forces_alt(vects, *, alpha=2.0, **kwargs): """1st-order derivative of electrostatic-like repulsion energy. The weights ensure equal importance of each shell to the objective function :footcite:p:`Cook2007`, :footcite:p:`Caruyer2013`. See :footcite:p:`Papadakis2000` for more details about the definition. Parameters ---------- vects : array-like (N * 3,) Points on the sphere. alpha : float Controls the power of the repulsion. Default is 1.0. weights : array-like (N, N) Weight values to the electrostatic energy. Returns ------- grad : array-like (N * 3,) Gradient of the objective function. References ---------- .. footbibliography:: """ nb_points = vects.shape[0] // 3 weights = kwargs.get("weights", np.ones((nb_points, nb_points))) charges = vects.reshape((nb_points, 3)) all_charges = np.concatenate((charges, -charges)) all_charges = all_charges[:, None] r = charges - all_charges r_mag = np.sqrt((r * r).sum(-1))[:, :, None] with warnings.catch_warnings(): warnings.simplefilter("ignore") forces = -2 * alpha * r / r_mag ** (alpha + 2.0) d = np.arange(len(charges)) forces[d, d] = 0 forces = forces[:nb_points] + forces[nb_points:] forces = forces * weights.reshape((nb_points, nb_points, 1)) forces = forces.sum(0) return forces.reshape((nb_points * 3))
[docs] @warning_for_keywords() def disperse_charges_alt(init_pointset, iters, *, tol=1.0e-3): """Reimplementation of disperse_charges making use of `scipy.optimize.fmin_slsqp`. Parameters ---------- init_pointset : (N, 3) ndarray Points on a unit sphere. iters : int Number of iterations to run. tol : float Tolerance for the optimization. Returns ------- array-like (N, 3) Distributed points on a unit sphere. """ K = init_pointset.shape[0] vects = optimize.fmin_slsqp( _get_forces_alt, init_pointset.reshape(K * 3), f_eqcons=_equality_constraints, fprime=_get_grad_forces_alt, iter=iters, acc=tol, args=(), iprint=0, ) return vects.reshape((K, 3))
[docs] @warning_for_keywords() def euler_characteristic_check(sphere, *, chi=2): r"""Checks the euler characteristic of a sphere If $f$ = number of faces, $e$ = number_of_edges and $v$ = number of vertices, the Euler formula says $f-e+v = 2$ for a mesh on a sphere. More generally, whether $f -e + v == \chi$ where $\chi$ is the Euler characteristic of the mesh. - Open chain (track) has $\chi=1$ - Closed chain (loop) has $\chi=0$ - Disk has $\chi=1$ - Sphere has $\chi=2$ - HemiSphere has $\chi=1$ Parameters ---------- sphere : Sphere A Sphere instance with vertices, edges and faces attributes. chi : int, optional The Euler characteristic of the mesh to be checked Returns ------- check : bool True if the mesh has Euler characteristic $\chi$ Examples -------- >>> euler_characteristic_check(unit_octahedron) True >>> hemisphere = HemiSphere.from_sphere(unit_icosahedron) >>> euler_characteristic_check(hemisphere, chi=1) True """ v = sphere.vertices.shape[0] e = sphere.edges.shape[0] f = sphere.faces.shape[0] return (f - e + v) == chi
octahedron_vertices = np.array( [ [1.0, 0.0, 0.0], [-1.0, 0.0, 0.0], [0.0, 1.0, 0.0], [0.0, -1.0, 0.0], [0.0, 0.0, 1.0], [0.0, 0.0, -1.0], ] ) octahedron_faces = np.array( [ [0, 4, 2], [1, 5, 3], [4, 2, 1], [5, 3, 0], [1, 4, 3], [0, 5, 2], [0, 4, 3], [1, 5, 2], ], dtype="uint16", ) t = (1 + np.sqrt(5)) / 2 icosahedron_vertices = np.array( [ [t, 1, 0], # 0 [-t, 1, 0], # 1 [t, -1, 0], # 2 [-t, -1, 0], # 3 [1, 0, t], # 4 [1, 0, -t], # 5 [-1, 0, t], # 6 [-1, 0, -t], # 7 [0, t, 1], # 8 [0, -t, 1], # 9 [0, t, -1], # 10 [0, -t, -1], # 11 ] ) icosahedron_vertices /= vector_norm(icosahedron_vertices, keepdims=True) icosahedron_faces = np.array( [ [8, 4, 0], [2, 5, 0], [2, 5, 11], [9, 2, 11], [2, 4, 0], [9, 2, 4], [10, 8, 1], [10, 8, 0], [10, 5, 0], [6, 3, 1], [9, 6, 3], [6, 8, 1], [6, 8, 4], [9, 6, 4], [7, 10, 1], [7, 10, 5], [7, 3, 1], [7, 3, 11], [9, 3, 11], [7, 5, 11], ], dtype="uint16", ) unit_octahedron = Sphere(xyz=octahedron_vertices, faces=octahedron_faces) unit_icosahedron = Sphere(xyz=icosahedron_vertices, faces=icosahedron_faces) hemi_icosahedron = HemiSphere.from_sphere(unit_icosahedron)