Source code for dipy.data.fetcher

import contextlib
from hashlib import md5
import json
import logging
import os
import os.path as op
from os.path import join as pjoin
import random
from shutil import copyfileobj
import tarfile
import tempfile
from urllib.request import Request, urlopen
import zipfile

import nibabel as nib
import numpy as np
from tqdm.auto import tqdm

from dipy.core.gradients import (
    gradient_table,
    gradient_table_from_gradient_strength_bvecs,
)
from dipy.io.gradients import read_bvals_bvecs
from dipy.io.image import load_nifti, load_nifti_data, save_nifti
from dipy.io.streamline import load_trk
from dipy.testing.decorators import warning_for_keywords
from dipy.utils.optpkg import TripWire, optional_package

# Set a user-writeable file-system location to put files:
if "DIPY_HOME" in os.environ:
    dipy_home = os.environ["DIPY_HOME"]
else:
    dipy_home = pjoin(op.expanduser("~"), ".dipy")

# The URL to the University of Washington Researchworks repository:
UW_RW_URL = "https://digital.lib.washington.edu/researchworks/bitstream/handle/"


boto3, has_boto3, _ = optional_package("boto3")

HEADER_LIST = [
    {"User-Agent": "Mozilla/5.0 (Windows NT 6.1; Win64; x64)"},
    # Firefox 77 Mac
    {
        "User-Agent": "Mozilla/5.0 (Macintosh; Intel Mac OS X 10.15; rv:77.0) Gecko/20100101 Firefox/77.0",  # noqa
        "Accept": "text/html,application/xhtml+xml,application/xml;q=0.9,image/webp,*/*;q=0.8",  # noqa
        "Accept-Language": "en-US,en;q=0.5",
        "Referer": "https://www.google.com/",
        "DNT": "1",
        "Connection": "keep-alive",
        "Upgrade-Insecure-Requests": "1",
    },
    # Firefox 77 Windows
    {
        "User-Agent": "Mozilla/5.0 (Windows NT 10.0; Win64; x64; rv:77.0) Gecko/20100101 Firefox/77.0",  # noqa
        "Accept": "text/html,application/xhtml+xml,application/xml;q=0.9,image/webp,*/*;q=0.8",  # noqa
        "Accept-Language": "en-US,en;q=0.5",
        "Accept-Encoding": "gzip, deflate, br",
        "Referer": "https://www.google.com/",
        "DNT": "1",
        "Connection": "keep-alive",
        "Upgrade-Insecure-Requests": "1",
    },
    # Chrome 83 Mac
    {
        "Connection": "keep-alive",
        "DNT": "1",
        "Upgrade-Insecure-Requests": "1",
        "User-Agent": "Mozilla/5.0 (Macintosh; Intel Mac OS X 10_15_5) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/83.0.4103.97 Safari/537.36",  # noqa
        "Accept": "text/html,application/xhtml+xml,application/xml;q=0.9,image/webp,image/apng,*/*;q=0.8,application/signed-exchange;v=b3;q=0.9",  # noqa
        "Sec-Fetch-Site": "none",
        "Sec-Fetch-Mode": "navigate",
        "Sec-Fetch-Dest": "document",
        "Referer": "https://www.google.com/",
        "Accept-Encoding": "gzip, deflate, br",
        "Accept-Language": "en-GB,en-US;q=0.9,en;q=0.8",
    },
    # Chrome 83 Windows
    {
        "Connection": "keep-alive",
        "Upgrade-Insecure-Requests": "1",
        "User-Agent": "Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/83.0.4103.97 Safari/537.36",  # noqa
        "Accept": "text/html,application/xhtml+xml,application/xml;q=0.9,image/webp,image/apng,*/*;q=0.8,application/signed-exchange;v=b3;q=0.9",  # noqa
        "Sec-Fetch-Site": "same-origin",
        "Sec-Fetch-Mode": "navigate",
        "Sec-Fetch-User": "?1",
        "Sec-Fetch-Dest": "document",
        "Referer": "https://www.google.com/",
        "Accept-Encoding": "gzip, deflate, br",
        "Accept-Language": "en-US,en;q=0.9",
    },
]


class FetcherError(Exception):
    pass


def _log(msg):
    """Helper function used as short hand for logging."""
    logger = logging.getLogger(__name__)
    logger.info(msg)


[docs] @warning_for_keywords() def copyfileobj_withprogress(fsrc, fdst, total_length, *, length=16 * 1024): for _ in tqdm(range(0, int(total_length), length), unit=" MB"): buf = fsrc.read(length) if not buf: break fdst.write(buf)
def _already_there_msg(folder): """ Prints a message indicating that a certain data-set is already in place """ msg = "Dataset is already in place. If you want to fetch it again " msg += f"please first remove the folder {folder} " _log(msg) def _get_file_md5(filename): """Compute the md5 checksum of a file""" md5_data = md5() with open(filename, "rb") as f: for chunk in iter(lambda: f.read(128 * md5_data.block_size), b""): md5_data.update(chunk) return md5_data.hexdigest()
[docs] @warning_for_keywords() def check_md5(filename, *, stored_md5=None): """ Computes the md5 of filename and check if it matches with the supplied string md5 Parameters ---------- filename : string Path to a file. md5 : string Known md5 of filename to check against. If None (default), checking is skipped """ if stored_md5 is not None: computed_md5 = _get_file_md5(filename) if stored_md5 != computed_md5: msg = f"""The downloaded file, {filename}, does not have the expected md5 checksum of "{stored_md5}". Instead, the md5 checksum was: "{computed_md5}". This could mean that something is wrong with the file or that the upstream file has been updated. You can try downloading the file again or updating to the newest version of dipy.""" raise FetcherError(msg)
def _get_file_data(fname, url, *, use_headers=False): """Get data from url and write it to file. Parameters ---------- fname : str The filename to write the data to. url : str The URL to get the data from. use_headers : bool, optional Whether to use headers when downloading files. """ req = url if use_headers: hdr = random.choice(HEADER_LIST) req = Request(url, headers=hdr) with contextlib.closing(urlopen(req)) as opener: try: response_size = opener.headers["content-length"] except KeyError: response_size = None with open(fname, "wb") as data: if response_size is None: copyfileobj(opener, data) else: copyfileobj_withprogress(opener, data, response_size)
[docs] @warning_for_keywords() def fetch_data(files, folder, *, data_size=None, use_headers=False): """Downloads files to folder and checks their md5 checksums Parameters ---------- files : dictionary For each file in `files` the value should be (url, md5). The file will be downloaded from url if the file does not already exist or if the file exists but the md5 checksum does not match. folder : str The directory where to save the file, the directory will be created if it does not already exist. data_size : str, optional A string describing the size of the data (e.g. "91 MB") to be logged to the screen. Default does not produce any information about data size. use_headers : bool, optional Whether to use headers when downloading files. Raises ------ FetcherError Raises if the md5 checksum of the file does not match the expected value. The downloaded file is not deleted when this error is raised. """ if not op.exists(folder): _log(f"Creating new folder {folder}") os.makedirs(folder) if data_size is not None: _log(f"Data size is approximately {data_size}") all_skip = True for f in files: url, md5 = files[f] fullpath = pjoin(folder, f) if op.exists(fullpath) and (_get_file_md5(fullpath) == md5): continue all_skip = False _log(f'Downloading "{f}" to {folder}') _log(f"From: {url}") _get_file_data(fullpath, url, use_headers=use_headers) check_md5(fullpath, stored_md5=md5) if all_skip: _already_there_msg(folder) else: _log(f"Files successfully downloaded to {folder}")
@warning_for_keywords() def _make_fetcher( name, folder, baseurl, remote_fnames, local_fnames, *, md5_list=None, doc="", data_size=None, msg=None, unzip=False, use_headers=False, ): """Create a new fetcher Parameters ---------- name : str The name of the fetcher function. folder : str The full path to the folder in which the files would be placed locally. Typically, this is something like 'pjoin(dipy_home, 'foo')' baseurl : str The URL from which this fetcher reads files remote_fnames : list of strings The names of the files in the baseurl location local_fnames : list of strings The names of the files to be saved on the local filesystem md5_list : list of strings, optional The md5 checksums of the files. Used to verify the content of the files. Default: None, skipping checking md5. doc : str, optional. Documentation of the fetcher. data_size : str, optional. If provided, is sent as a message to the user before downloading starts. msg : str, optional. A message to print to screen when fetching takes place. Default (None) is to print nothing unzip : bool, optional Whether to unzip the file(s) after downloading them. Supports zip, gz, and tar.gz files. use_headers : bool, optional Whether to use headers when downloading files. returns ------- fetcher : function A function that, when called, fetches data according to the designated inputs """ def fetcher(): files = {} for ( i, (f, n), ) in enumerate(zip(remote_fnames, local_fnames)): files[n] = (baseurl + f, md5_list[i] if md5_list is not None else None) fetch_data(files, folder, data_size=data_size, use_headers=use_headers) if msg is not None: _log(msg) if unzip: for f in local_fnames: split_ext = op.splitext(f) if split_ext[-1] in (".gz", ".bz2"): if op.splitext(split_ext[0])[-1] == ".tar": ar = tarfile.open(pjoin(folder, f)) ar.extractall(path=folder) ar.close() else: raise ValueError("File extension is not recognized") elif split_ext[-1] == ".zip": z = zipfile.ZipFile(pjoin(folder, f), "r") files[f] += (tuple(z.namelist()),) z.extractall(folder) z.close() else: raise ValueError("File extension is not recognized") return files, folder fetcher.__name__ = name fetcher.__doc__ = doc return fetcher fetch_isbi2013_2shell = _make_fetcher( "fetch_isbi2013_2shell", pjoin(dipy_home, "isbi2013"), UW_RW_URL + "1773/38465/", ["phantom64.nii.gz", "phantom64.bval", "phantom64.bvec"], ["phantom64.nii.gz", "phantom64.bval", "phantom64.bvec"], md5_list=[ "42911a70f232321cf246315192d69c42", "90e8cf66e0f4d9737a3b3c0da24df5ea", "4b7aa2757a1ccab140667b76e8075cb1", ], doc="Download a 2-shell software phantom dataset", data_size="", ) fetch_stanford_labels = _make_fetcher( "fetch_stanford_labels", pjoin(dipy_home, "stanford_hardi"), "https://stacks.stanford.edu/file/druid:yx282xq2090/", ["aparc-reduced.nii.gz", "label_info.txt"], ["aparc-reduced.nii.gz", "label_info.txt"], md5_list=["742de90090d06e687ce486f680f6d71a", "39db9f0f5e173d7a2c2e51b07d5d711b"], doc="Download reduced freesurfer aparc image from stanford web site", ) fetch_sherbrooke_3shell = _make_fetcher( "fetch_sherbrooke_3shell", pjoin(dipy_home, "sherbrooke_3shell"), UW_RW_URL + "1773/38475/", ["HARDI193.nii.gz", "HARDI193.bval", "HARDI193.bvec"], ["HARDI193.nii.gz", "HARDI193.bval", "HARDI193.bvec"], md5_list=[ "0b735e8f16695a37bfbd66aab136eb66", "e9b9bb56252503ea49d31fb30a0ac637", "0c83f7e8b917cd677ad58a078658ebb7", ], doc="Download a 3shell HARDI dataset with 192 gradient direction", ) fetch_stanford_hardi = _make_fetcher( "fetch_stanford_hardi", pjoin(dipy_home, "stanford_hardi"), "https://stacks.stanford.edu/file/druid:yx282xq2090/", ["dwi.nii.gz", "dwi.bvals", "dwi.bvecs"], ["HARDI150.nii.gz", "HARDI150.bval", "HARDI150.bvec"], md5_list=[ "0b18513b46132b4d1051ed3364f2acbc", "4e08ee9e2b1d2ec3fddb68c70ae23c36", "4c63a586f29afc6a48a5809524a76cb4", ], doc="Download a HARDI dataset with 160 gradient directions", ) fetch_resdnn_tf_weights = _make_fetcher( "fetch_resdnn_tf_weights", pjoin(dipy_home, "histo_resdnn_weights"), "https://ndownloader.figshare.com/files/", ["22736240"], ["resdnn_weights_mri_2018.h5"], md5_list=["f0e118d72ab804a464494bd9015227f4"], doc="Download ResDNN Tensorflow model weights for Nath et. al 2018", ) fetch_resdnn_torch_weights = _make_fetcher( "fetch_resdnn_torch_weights", pjoin(dipy_home, "histo_resdnn_weights"), "https://ndownloader.figshare.com/files/", ["50019429"], ["histo_weights.pth"], md5_list=["ca13692bbbaea725ff8b5df2d3a2779a"], doc="Download ResDNN Pytorch model weights for Nath et. al 2018", ) fetch_synb0_weights = _make_fetcher( "fetch_synb0_weights", pjoin(dipy_home, "synb0"), "https://ndownloader.figshare.com/files/", ["36379914", "36379917", "36379920", "36379923", "36379926"], [ "synb0_default_weights1.h5", "synb0_default_weights2.h5", "synb0_default_weights3.h5", "synb0_default_weights4.h5", "synb0_default_weights5.h5", ], md5_list=[ "a9362c75bc28616167a11a42fe5d004e", "9dc9353d6ff741d8e22b8569f157c56e", "e548f341e4f12d63dfbed306233fddce", "8cb7a3492d08e4c9b8938277d6fd9b75", "5e796f892605b3bdb9cb9678f1c6ac11", ], doc="Download Synb0 model weights for Schilling et. al 2019", ) fetch_synb0_test = _make_fetcher( "fetch_synb0_test", pjoin(dipy_home, "synb0"), "https://ndownloader.figshare.com/files/", ["36379911", "36671850"], ["test_input_synb0.npz", "test_output_synb0.npz"], md5_list=["987203aa73de2dac8770f39ed506dc0c", "515544fbcafd9769785502821b47b661"], doc="Download Synb0 test data for Schilling et. al 2019", ) fetch_deepn4_weights = _make_fetcher( "fetch_deepn4_weights", pjoin(dipy_home, "deepn4"), "https://ndownloader.figshare.com/files/", ["44673313"], ["model_weights.h5"], md5_list=["ef264edd554177a180cf99162dbd2745"], doc="Download DeepN4 model weights for Kanakaraj et. al 2024", ) fetch_deepn4_test = _make_fetcher( "fetch_deepn4_test", pjoin(dipy_home, "deepn4"), "https://ndownloader.figshare.com/files/", ["48842938", "48842941"], ["test_input_deepn4.npz", "test_output_deepn4.npz"], md5_list=["07aa7cc7c7f839683a0aad5bb853605b", "8f52bdfceef93a5acae7c32a2c63a7c6"], doc="Download DeepN4 test data for Kanakaraj et. al 2024", ) fetch_evac_tf_weights = _make_fetcher( "fetch_evac_tf_weights", pjoin(dipy_home, "evac"), "https://ndownloader.figshare.com/files/", ["43037191"], ["evac_default_weights.h5"], md5_list=["491cfa4f9a2860fad6c19f2b71b918e1"], doc="Download EVAC+ model weights for Park et. al 2022", ) fetch_evac_torch_weights = _make_fetcher( "fetch_evac_torch_weights", pjoin(dipy_home, "evac"), "https://ndownloader.figshare.com/files/", ["50019432"], ["evac_weights.pth"], md5_list=["b2bab512a0f899f089d9dd9ffc44f65b"], doc="Download EVAC+ model weights for Park et. al 2022", ) fetch_evac_test = _make_fetcher( "fetch_evac_test", pjoin(dipy_home, "evac"), "https://ndownloader.figshare.com/files/", ["48891958"], ["evac_test_data.npz"], md5_list=["072a0dd6d2cddf8a3697b6a772e06e29"], doc="Download EVAC+ test data for Park et. al 2022", ) fetch_stanford_t1 = _make_fetcher( "fetch_stanford_t1", pjoin(dipy_home, "stanford_hardi"), "https://stacks.stanford.edu/file/druid:yx282xq2090/", ["t1.nii.gz"], ["t1.nii.gz"], md5_list=["a6a140da6a947d4131b2368752951b0a"], ) fetch_stanford_pve_maps = _make_fetcher( "fetch_stanford_pve_maps", pjoin(dipy_home, "stanford_hardi"), "https://stacks.stanford.edu/file/druid:yx282xq2090/", ["pve_csf.nii.gz", "pve_gm.nii.gz", "pve_wm.nii.gz"], ["pve_csf.nii.gz", "pve_gm.nii.gz", "pve_wm.nii.gz"], md5_list=[ "2c498e4fed32bca7f726e28aa86e9c18", "1654b20aeb35fc2734a0d7928b713874", "2e244983cf92aaf9f9d37bc7716b37d5", ], ) fetch_stanford_tracks = _make_fetcher( "fetch_stanford_tracks", pjoin(dipy_home, "stanford_hardi"), "https://raw.githubusercontent.com/dipy/dipy_datatest/main/", [ "hardi-lr-superiorfrontal.trk", ], [ "hardi-lr-superiorfrontal.trk", ], md5_list=[ "2d49aaf6ad6c10d8d069bfb319bf3541", ], doc="Download stanford track for examples", data_size="1.4MB", ) fetch_taiwan_ntu_dsi = _make_fetcher( "fetch_taiwan_ntu_dsi", pjoin(dipy_home, "taiwan_ntu_dsi"), UW_RW_URL + "1773/38480/", ["DSI203.nii.gz", "DSI203.bval", "DSI203.bvec", "DSI203_license.txt"], ["DSI203.nii.gz", "DSI203.bval", "DSI203.bvec", "DSI203_license.txt"], md5_list=[ "950408c0980a7154cb188666a885a91f", "602e5cb5fad2e7163e8025011d8a6755", "a95eb1be44748c20214dc7aa654f9e6b", "7fa1d5e272533e832cc7453eeba23f44", ], doc="Download a DSI dataset with 203 gradient directions", msg="See DSI203_license.txt for LICENSE. For the complete datasets" + " please visit https://dsi-studio.labsolver.org", data_size="91MB", ) fetch_syn_data = _make_fetcher( "fetch_syn_data", pjoin(dipy_home, "syn_test"), UW_RW_URL + "1773/38476/", ["t1.nii.gz", "b0.nii.gz"], ["t1.nii.gz", "b0.nii.gz"], md5_list=["701bda02bb769655c7d4a9b1df2b73a6", "e4b741f0c77b6039e67abb2885c97a78"], data_size="12MB", doc="Download t1 and b0 volumes from the same session", ) fetch_mni_template = _make_fetcher( "fetch_mni_template", pjoin(dipy_home, "mni_template"), "https://ndownloader.figshare.com/files/", [ "5572676?private_link=4b8666116a0128560fb5", "5572673?private_link=93216e750d5a7e568bda", "5572670?private_link=33c92d54d1afb9aa7ed2", "5572661?private_link=584319b23e7343fed707", ], [ "mni_icbm152_t2_tal_nlin_asym_09a.nii", "mni_icbm152_t1_tal_nlin_asym_09a.nii", "mni_icbm152_t1_tal_nlin_asym_09c_mask.nii", "mni_icbm152_t1_tal_nlin_asym_09c.nii", ], md5_list=[ "f41f2e1516d880547fbf7d6a83884f0d", "1ea8f4f1e41bc17a94602e48141fdbc8", "a243e249cd01a23dc30f033b9656a786", "3d5dd9b0cd727a17ceec610b782f66c1", ], doc="fetch the MNI 2009a T1 and T2, and 2009c T1 and T1 mask files", data_size="70MB", ) fetch_scil_b0 = _make_fetcher( "fetch_scil_b0", dipy_home, UW_RW_URL + "1773/38479/", ["datasets_multi-site_all_companies.zip"], ["datasets_multi-site_all_companies.zip"], md5_list=["e9810fa5bf21b99da786647994d7d5b7"], doc="Download b=0 datasets from multiple MR systems (GE, Philips, " + "Siemens) and different magnetic fields (1.5T and 3T)", data_size="9.2MB", unzip=True, ) fetch_bundles_2_subjects = _make_fetcher( "fetch_bundles_2_subjects", pjoin(dipy_home, "exp_bundles_and_maps"), UW_RW_URL + "1773/38477/", ["bundles_2_subjects.tar.gz"], ["bundles_2_subjects.tar.gz"], md5_list=["97756fbef11ce2df31f1bedf1fc7aac7"], data_size="234MB", doc="Download 2 subjects from the SNAIL dataset with their bundles", unzip=True, ) fetch_ivim = _make_fetcher( "fetch_ivim", pjoin(dipy_home, "ivim"), "https://ndownloader.figshare.com/files/", ["5305243", "5305246", "5305249"], ["ivim.nii.gz", "ivim.bval", "ivim.bvec"], md5_list=[ "cda596f89dc2676af7d9bf1cabccf600", "f03d89f84aa9a9397103a400e43af43a", "fb633a06b02807355e49ccd85cb92565", ], doc="Download IVIM dataset", ) fetch_cfin_multib = _make_fetcher( "fetch_cfin_multib", pjoin(dipy_home, "cfin_multib"), UW_RW_URL + "/1773/38488/", [ "T1.nii", "__DTI_AX_ep2d_2_5_iso_33d_20141015095334_4.nii", "__DTI_AX_ep2d_2_5_iso_33d_20141015095334_4.bval", "__DTI_AX_ep2d_2_5_iso_33d_20141015095334_4.bvec", ], [ "T1.nii", "__DTI_AX_ep2d_2_5_iso_33d_20141015095334_4.nii", "__DTI_AX_ep2d_2_5_iso_33d_20141015095334_4.bval", "__DTI_AX_ep2d_2_5_iso_33d_20141015095334_4.bvec", ], md5_list=[ "889883b5e7d93a6e372bc760ea887e7c", "9daea1d01d68fd0055a3b34f5ffd5f6e", "3ee44135fde7ea5c9b8c801414bdde2c", "948373391de950e7cc1201ba9f696bf0", ], doc="Download CFIN multi b-value diffusion data", msg=( "This data was provided by Brian Hansen and Sune Jespersen" + " More details about the data are available in their paper: " + " https://www.nature.com/articles/sdata201672" ), ) fetch_file_formats = _make_fetcher( "bundle_file_formats_example", pjoin(dipy_home, "bundle_file_formats_example"), "https://zenodo.org/record/3352379/files/", [ "cc_m_sub.trk", "laf_m_sub.tck", "lpt_m_sub.fib", "raf_m_sub.vtk", "rpt_m_sub.dpy", "template0.nii.gz", ], [ "cc_m_sub.trk", "laf_m_sub.tck", "lpt_m_sub.fib", "raf_m_sub.vtk", "rpt_m_sub.dpy", "template0.nii.gz", ], md5_list=[ "78ed7bead3e129fb4b4edd6da1d7e2d2", "20009796ccd43dc8d2d5403b25dff717", "8afa8419e2efe04ede75cce1f53c77d8", "9edcbea30c7a83b467c3cdae6ce963c8", "42bff2538a650a7ff1e57bfd9ed90ad6", "99c37a2134026d2c4bbb7add5088ddc6", ], doc="Download 5 bundles in various file formats and their reference", data_size="25MB", ) fetch_bundle_atlas_hcp842 = _make_fetcher( "fetch_bundle_atlas_hcp842", pjoin(dipy_home, "bundle_atlas_hcp842"), "https://ndownloader.figshare.com/files/", ["13638644"], ["Atlas_80_Bundles.zip"], md5_list=["78331d527a10ec000d4f33bac472e099"], doc="Download atlas tractogram from the hcp842 dataset with 80 bundles", data_size="300MB", unzip=True, ) fetch_30_bundle_atlas_hcp842 = _make_fetcher( "fetch_30_bundle_atlas_hcp842", pjoin(dipy_home, "bundle_atlas_hcp842"), "https://ndownloader.figshare.com/files/", ["26842853"], ["Atlas_30_Bundles.zip"], md5_list=["f3922cdbea4216823798fade128d6782"], doc="Download atlas tractogram from the hcp842 dataset with 30 bundles", data_size="207.09MB", unzip=True, ) fetch_target_tractogram_hcp = _make_fetcher( "fetch_target_tractogram_hcp", pjoin(dipy_home, "target_tractogram_hcp"), "https://ndownloader.figshare.com/files/", ["12871127"], ["hcp_tractogram.zip"], md5_list=["fa25ef19c9d3748929b6423397963b6a"], doc="Download tractogram of one of the hcp dataset subjects", data_size="541MB", unzip=True, ) fetch_bundle_fa_hcp = _make_fetcher( "fetch_bundle_fa_hcp", pjoin(dipy_home, "bundle_fa_hcp"), "https://ndownloader.figshare.com/files/", ["14035265"], ["hcp_bundle_fa.nii.gz"], md5_list=["2d5c0036b0575597378ddf39191028ea"], doc=("Download map of FA within two bundles in one of the hcp dataset subjects"), data_size="230kb", ) fetch_qtdMRI_test_retest_2subjects = _make_fetcher( "fetch_qtdMRI_test_retest_2subjects", pjoin(dipy_home, "qtdMRI_test_retest_2subjects"), "https://zenodo.org/record/996889/files/", [ "subject1_dwis_test.nii.gz", "subject2_dwis_test.nii.gz", "subject1_dwis_retest.nii.gz", "subject2_dwis_retest.nii.gz", "subject1_ccmask_test.nii.gz", "subject2_ccmask_test.nii.gz", "subject1_ccmask_retest.nii.gz", "subject2_ccmask_retest.nii.gz", "subject1_scheme_test.txt", "subject2_scheme_test.txt", "subject1_scheme_retest.txt", "subject2_scheme_retest.txt", ], [ "subject1_dwis_test.nii.gz", "subject2_dwis_test.nii.gz", "subject1_dwis_retest.nii.gz", "subject2_dwis_retest.nii.gz", "subject1_ccmask_test.nii.gz", "subject2_ccmask_test.nii.gz", "subject1_ccmask_retest.nii.gz", "subject2_ccmask_retest.nii.gz", "subject1_scheme_test.txt", "subject2_scheme_test.txt", "subject1_scheme_retest.txt", "subject2_scheme_retest.txt", ], md5_list=[ "ebd7441f32c40e25c28b9e069bd81981", "dd6a64dd68c8b321c75b9d5fb42c275a", "830a7a028a66d1b9812f93309a3f9eae", "d7f1951e726c35842f7ea0a15d990814", "ddb8dfae908165d5e82c846bcc317cab", "5630c06c267a0f9f388b07b3e563403c", "02e9f92b31e8980f658da99e532e14b5", "6e7ce416e7cfda21cecce3731f81712b", "957cb969f97d89e06edd7a04ffd61db0", "5540c0c9bd635c29fc88dd599cbbf5e6", "5540c0c9bd635c29fc88dd599cbbf5e6", "5540c0c9bd635c29fc88dd599cbbf5e6", ], doc="Downloads test-retest qt-dMRI acquisitions of two C57Bl6 mice.", data_size="298.2MB", ) fetch_gold_standard_io = _make_fetcher( "fetch_gold_standard_io", pjoin(dipy_home, "gold_standard_io"), "https://zenodo.org/record/7767654/files/", [ "gs.trk", "gs.tck", "gs.trx", "gs.fib", "gs.dpy", "gs.nii", "gs_3mm.nii", "gs_rasmm_space.txt", "gs_voxmm_space.txt", "gs_vox_space.txt", "points_data.txt", "streamlines_data.txt", ], [ "gs.trk", "gs.tck", "gs.trx", "gs.fib", "gs.dpy", "gs.nii", "gs_3mm.nii", "gs_rasmm_space.txt", "gs_voxmm_space.txt", "gs_vox_space.txt", "points_data.json", "streamlines_data.json", ], md5_list=[ "3acf565779f4d5107f96b2ef90578d64", "151a30cf356c002060d720bf9d577245", "a6587f1a3adc4df076910c4d72eb4161", "e9818e07bef5bd605dea0877df14a2b0", "248606297e400d1a9b1786845aad8de3", "a2d4d8f62d1de0ab9927782c7d51cb27", "217b3ae0712a02b2463b8eedfe9a0a68", "ca193a5508d3313d542231aaf262960f", "3284de59dfd9ca3130e6e01258ed9022", "a2a89c387f45adab733652a92f6602d5", "4bcca0c6195871fc05e93cdfabec22b4", "578f29052ac03a6d8a98580eb7c70d97", ], doc="Downloads the gold standard for streamlines io testing.", data_size="47.KB", ) fetch_qte_lte_pte = _make_fetcher( "fetch_qte_lte_pte", pjoin(dipy_home, "qte_lte_pte"), "https://zenodo.org/record/4624866/files/", ["lte-pte.nii.gz", "lte-pte.bval", "lte-pte.bvec", "mask.nii.gz"], ["lte-pte.nii.gz", "lte-pte.bval", "lte-pte.bvec", "mask.nii.gz"], md5_list=[ "f378b2cd9f57625512002b9e4c0f1660", "5c25d24dd3df8590582ed690507a8769", "31abe55dfda7ef5fdf5015d0713be9b0", "1b7b83b8a60295f52d80c3855a12b275", ], doc="Download QTE data with linear and planar tensor encoding.", data_size="41.5 MB", ) fetch_cti_rat1 = _make_fetcher( "fetch_cti_rat1", pjoin(dipy_home, "cti_rat1"), "https://zenodo.org/record/8276773/files/", [ "Rat1_invivo_cti_data.nii", "bvals1.bval", "bvec1.bvec", "bvals2.bval", "bvec2.bvec", "Rat1_mask.nii", ], [ "Rat1_invivo_cti_data.nii", "bvals1.bval", "bvec1.bvec", "bvals2.bval", "bvec2.bvec", "Rat1_mask.nii", ], md5_list=[ "2f855e7826f359d80cfd6f094d3a7008", "1deed2a91e20104ca42d7482cc096a9a", "40a4f5131b8a64608d16b0c6c5ad0837", "1979c7dc074e00f01103cbdf83ed78db", "653d9344060803d5576f43c65ce45ccb", "34bc3d5acea9442d05ef185717780440", ], doc="Download Rat Brain DDE data for CTI reconstruction" + " (Rat #1 data from Henriques et al. MRM 2021).", data_size="152.92 MB", msg=( "More details about the data are available in the paper: " + "https://onlinelibrary.wiley.com/doi/full/10.1002/mrm.28938" ), ) fetch_fury_surface = _make_fetcher( "fetch_fury_surface", pjoin(dipy_home, "fury_surface"), "https://raw.githubusercontent.com/fury-gl/fury-data/master/surfaces/", ["100307_white_lh.vtk"], ["100307_white_lh.vtk"], md5_list=["dbec91e29af15541a5cb36d80977b26b"], doc="Surface for testing and examples", data_size="11MB", ) fetch_DiB_70_lte_pte_ste = _make_fetcher( "fetch_DiB_70_lte_pte_ste", pjoin(dipy_home, "DiB_70_lte_pte_ste"), "https://github.com/filip-szczepankiewicz/Szczepankiewicz_DIB_2019/" "raw/master/DATA/brain/NII_Boito_SubSamples/", [ "DiB_70_lte_pte_ste/DiB_70_lte_pte_ste.nii.gz", "DiB_70_lte_pte_ste/bval_DiB_70_lte_pte_ste.bval", "DiB_70_lte_pte_ste/bvec_DiB_70_lte_pte_ste.bvec", "DiB_mask.nii.gz", ], [ "DiB_70_lte_pte_ste.nii.gz", "bval_DiB_70_lte_pte_ste.bval", "bvec_DiB_70_lte_pte_ste.bvec", "DiB_mask.nii.gz", ], doc="Download QTE data with linear, planar, " + "and spherical tensor encoding. If using this data please cite " + "F Szczepankiewicz, S Hoge, C-F Westin. Linear, planar and " + "spherical tensor-valued diffusion MRI data by free waveform " + "encoding in healthy brain, water, oil and liquid crystals. " + "Data in Brief (2019)," + "DOI: https://doi.org/10.1016/j.dib.2019.104208", md5_list=[ "11f2e0d53e19061654eb3cdfc8fe9827", "15021885b4967437c8cf441c09045c25", "1e6b867182da249f81aa9abd50e8b9f7", "2ea48d80b6ae1c3da50cb44e615b09e5", ], data_size="51.1 MB", ) fetch_DiB_217_lte_pte_ste = _make_fetcher( "fetch_DiB_217_lte_pte_ste", pjoin(dipy_home, "DiB_217_lte_pte_ste"), "https://github.com/filip-szczepankiewicz/Szczepankiewicz_DIB_2019/" "raw/master/DATA/brain/NII_Boito_SubSamples/", [ "DiB_217_lte_pte_ste/DiB_217_lte_pte_ste_1.nii.gz", "DiB_217_lte_pte_ste/DiB_217_lte_pte_ste_2.nii.gz", "DiB_217_lte_pte_ste/bval_DiB_217_lte_pte_ste.bval", "DiB_217_lte_pte_ste/bvec_DiB_217_lte_pte_ste.bvec", "DiB_mask.nii.gz", ], [ "DiB_217_lte_pte_ste_1.nii.gz", "DiB_217_lte_pte_ste_2.nii.gz", "bval_DiB_217_lte_pte_ste.bval", "bvec_DiB_217_lte_pte_ste.bvec", "DiB_mask.nii.gz", ], doc="Download QTE data with linear, planar, " + "and spherical tensor encoding. If using this data please cite " + "F Szczepankiewicz, S Hoge, C-F Westin. Linear, planar and " + "spherical tensor-valued diffusion MRI data by free waveform " + "encoding in healthy brain, water, oil and liquid crystals. " + "Data in Brief (2019)," + "DOI: https://doi.org/10.1016/j.dib.2019.104208", md5_list=[ "424e9cf75b20bc1f7ae1acde26b26da0", "8e70d14fb8f08065a7a0c4d3033179c6", "1f657215a475676ce333299038df3a39", "4220ca92f2906c97ed4c7287eb62c6f0", "2ea48d80b6ae1c3da50cb44e615b09e5", ], data_size="166.3 MB", ) fetch_ptt_minimal_dataset = _make_fetcher( "fetch_ptt_minimal_dataset", pjoin(dipy_home, "ptt_dataset"), "https://raw.githubusercontent.com/dipy/dipy_datatest/main/", ["ptt_fod.nii", "ptt_seed_coords.txt", "ptt_seed_image.nii"], ["ptt_fod.nii", "ptt_seed_coords.txt", "ptt_seed_image.nii"], md5_list=[ "6e454f8088b64e7b85218c71010d8dbe", "8c2d71fb95020e2bb1743623eb11c2a6", "9cb88f88d664019ba80c0b372c8bafec", ], doc="Download FOD and seeds for PTT testing and examples", data_size="203KB", ) fetch_bundle_warp_dataset = _make_fetcher( "fetch_bundle_warp_dataset", pjoin(dipy_home, "bundle_warp"), "https://ndownloader.figshare.com/files/", ["40026343", "40026346"], [ "m_UF_L.trk", "s_UF_L.trk", ], md5_list=["4db38ca1e80c16d6e3a97f88f0611187", "c1499005baccfab865ce38368d7a4c7f"], doc="Download Bundle Warp dataset", ) fetch_disco1_dataset = _make_fetcher( "fetch_disco1_dataset", pjoin(dipy_home, "disco", "disco_1"), "https://data.mendeley.com/public-files/datasets/fgf86jdfg6/files/", [ "028147aa-f17f-4514-80e6-24c7419da75e/file_downloaded", "e714ff30-be78-4284-b282-84ed011885de/file_downloaded", "a45ac785-4977-434b-b05e-c97ed4a1e6c7/file_downloaded", "c3d1de3e-6dcf-4142-99bf-4dd42d445a0a/file_downloaded", "35f025f6-d4ab-45e6-9f58-e7685862117f/file_downloaded", "02ad744f-4910-40a2-870b-5507d6195926/file_downloaded", "c030a2dc-6b80-43d7-a63c-87a28c77c73b/file_downloaded", "c6a54096-d7ea-4d05-a921-6aeb0c1bc625/file_downloaded", "d95bfd9a-8886-48ec-acc5-5526f3bca32c/file_downloaded", "8ef464f7-e648-4583-a208-3ee87a08a2a1/file_downloaded", "cbaa3708-7f39-46ec-8cea-51285956bf5a/file_downloaded", "964040aa-e1f0-48f7-8eb7-87553f4190e5/file_downloaded", "e8bea304-35ce-45de-95be-c51e2ed917f6/file_downloaded", "ec5da4f1-53bd-4103-8722-ea3211223150/file_downloaded", "c1ddba00-9ea1-435a-946a-bca43079eadf/file_downloaded", "0aa2d1a0-ae07-4eff-af6a-22183249e9fa/file_downloaded", "744d468f-bd0e-44a8-8395-893889c16462/file_downloaded", "311afc50-9bf5-469a-a298-091d252940c9/file_downloaded", "68f37ddf-8f06-4d3e-80c5-842b495516ba/file_downloaded", "d272c9aa-85d9-40d1-9a87-1044d361da0c/file_downloaded", "0ba92dbc-4489-4626-8bfd-5d56b7557699/file_downloaded", "099c3f98-4574-4315-be5e-a2b183695e71/file_downloaded", "231bbeac-bdec-4815-9238-9a2370bdca6b/file_downloaded", "cd073c2f-c3b0-4a46-9c3d-63a853a8af49/file_downloaded", "470f235c-04f5-4544-bf4b-f11ac0d8fbd2/file_downloaded", "276b637b-6244-4927-b1af-8c1ca12b8a0c/file_downloaded", "1c524b3f-ca6b-4f6f-9e6f-25431496000a/file_downloaded", "24f8fe7c-8ab2-40c8-baec-4d1f29eba4f2/file_downloaded", "5cc5fb58-6058-40dd-9969-019f7814a4a1/file_downloaded", "aabcc286-b607-46e1-9229-80638630d518/file_downloaded", "87b6cee7-0645-4405-b5b3-af89c04a2ac9/file_downloaded", "ad47bf18-8b69-4b0c-8706-ada53365fd99/file_downloaded", "417505fb-3a7a-4cbc-ac8a-92acc26bb958/file_downloaded", "7708e776-f07c-47a9-9982-b5fbd9dd4390/file_downloaded", "654863c6-6154-4da6-9f4c-3b0c76535dd7/file_downloaded", "5f8d028c-82a1-4837-b34f-ad8251c0685b/file_downloaded", "bd2fa6f3-f050-44a6-ad18-6c31bb037eb7/file_downloaded", "b432035b-5429-4255-8e21-88184802d005/file_downloaded", "1f1a4391-9740-4e17-89c3-79430aab0f91/file_downloaded", "6c90c685-ae16-4f21-ae13-71e89ca9eb66/file_downloaded", "f8878550-061b-40e0-a0c7-5aac5a33e542/file_downloaded", ], [ "DiSCo_gradients.bvals", "DiSCo_gradients_dipy.bvecs", "DiSCo_gradients_fsl.bvecs", "DiSCo_gradients_mrtrix.b", "DiSCo_gradients.scheme", "lowRes_DiSCo1_DWI_RicianNoise-snr40.nii.gz", "lowRes_DiSCo1_ROIs.nii.gz", "lowRes_DiSCo1_mask.nii.gz", "lowRes_DiSCo1_DWI_RicianNoise-snr50.nii.gz", "lowRes_DiSCo1_ROIs-mask.nii.gz", "lowRes_DiSCo1_DWI_Intra.nii.gz", "lowRes_DiSCo1_Strand_Bundle_Count.nii.gz", "lowRes_DiSCo1_Strand_Count.nii.gz", "lowRes_DiSCo1_Strand_Intra_Volume_Fraction.nii.gz", "lowRes_DiSCo1_DWI_RicianNoise-snr30.nii.gz", "lowRes_DiSCo1_DWI_RicianNoise-snr20.nii.gz", "lowRes_DiSCo1_DWI.nii.gz", "lowRes_DiSCo1_Strand_ODFs.nii.gz", "lowRes_DiSCo1_Strand_Average_Diameter.nii.gz", "lowRes_DiSCo1_DWI_RicianNoise-snr10.nii.gz", "highRes_DiSCo1_Strand_ODFs.nii.gz", "highRes_DiSCo1_DWI_RicianNoise-snr50.nii.gz", "highRes_DiSCo1_DWI.nii.gz", "highRes_DiSCo1_ROIs.nii.gz", "highRes_DiSCo1_DWI_RicianNoise-snr40.nii.gz", "highRes_DiSCo1_mask.nii.gz", "highRes_DiSCo1_Strand_Bundle_Count.nii.gz", "highRes_DiSCo1_DWI_RicianNoise-snr20.nii.gz", "highRes_DiSCo1_DWI_RicianNoise-snr30.nii.gz", "highRes_DiSCo1_Strand_Average_Diameter.nii.gz", "highRes_DiSCo1_Strand_Streamline_Count.nii.gz", "highRes_DiSCo1_DWI_Intra.nii.gz", "highRes_DiSCo1_DWI_RicianNoise-snr10.nii.gz", "highRes_DiSCo1_Strand_Intra_Volume_Fraction.nii.gz", "highRes_DiSCo1_ROIs-mask.nii.gz", "DiSCo1_Connectivity_Matrix_Strands_Count.txt", "DiSCo1_Connectivity_Matrix_Cross-Sectional_Area.txt", "DiSCo1_Strands_ROIs_Pairs.txt", "DiSCo1_Strands_Diameters.txt", "DiSCo1_Strands_Trajectories.tck", "DiSCo1_Strands_Trajectories.trk", ], md5_list=[ "c03cfec8ee605a54866ef09c3c8ba31d", "b8443aee0a2d2b60ee658a2342cccf0f", "4ac749bb584e6963851ee170e137e3ec", "207d57a6c16cdf230b45d4df5b4e1dee", "2346de6ad563a10e40b8ebec3ac4e0ff", "1981ac168ea76ce4d70e3dcd1d749f13", "9a06a057df5b2ce5cb05e8c9f59be14f", "ac9900538f4563c39032dcc289c36a51", "beb0f999bc26cd32ba2079db77e7840a", "8d5659e78d7d028e3da8f5af89402669", "db335f7d52b85c1d0de7ca61a2fca64b", "f1c49868436e0beca3b7cc50416c664e", "b967371fe44c4d736edcd65b8da12b93", "d4da2df8cd7cbf24cdd0af09247ff0a2", "80316e4e687ee3c2e2a9221929d1e826", "4c3580f512b325552302792a64da87f0", "56ee11c59348f3a61079483bd249032d", "580d72144a5e19a119e6839d8f1c623d", "f7bdfea9c3163cac7d4f67f49928b682", "7cf61f1088971a8799df80c29dc7a9f1", "da762d46e6b7d513be0411ac66769c5c", "5d7bac8737a4543eee60f7aa26073df9", "370bdf6571aa061daaa654a107eae6fd", "50fd6e201536b4a4815dd102d9c80974", "8269aed23fc643bb98c36945462e866a", "86becb33b54a3c4291f0cd77ec87bb3e", "d240cccd9d84e69bf146a5d06bb898bb", "e75a1838ff8e5860bdbde1162e5aa80f", "f7d9507884960f86918f6328962d98d2", "be4f8221ccdd5a139f16ac18353d12c6", "d8d33dbdc820289f5575b5c064c6dfe9", "53740e3d2851d5f301d93730268928f2", "ed98e0f26abc85af5735fe228cb86b4c", "50a9385f567138c23df4ddf333c785c0", "2d845131db87b6a2230a325e076bdd7f", "c53f6e42cfd796a561b1af434a61c91d", "f97730469c53deaa5b827effebef3e78", "d34fd49147cd061b9417328118567d1c", "f0d28f1d7eec1fad866607ee59686476", "e475641a08ebafeecb79a21e618d7081", "8c2a338606c0cb7de6e34b8317f59cd6", ], doc=( "Download DISCO 1 dataset: The Diffusion-Simulated Connectivity " "Dataset. DOI: 10.17632/fgf86jdfg6.3" ), data_size="1.05 GB", use_headers=True, ) fetch_disco2_dataset = _make_fetcher( "fetch_disco2_dataset", pjoin(dipy_home, "disco", "disco_2"), "https://data.mendeley.com/public-files/datasets/fgf86jdfg6/files/", [ "028147aa-f17f-4514-80e6-24c7419da75e/file_downloaded", "e714ff30-be78-4284-b282-84ed011885de/file_downloaded", "a45ac785-4977-434b-b05e-c97ed4a1e6c7/file_downloaded", "c3d1de3e-6dcf-4142-99bf-4dd42d445a0a/file_downloaded", "35f025f6-d4ab-45e6-9f58-e7685862117f/file_downloaded", "e7a50803-a58d-47dc-b026-6a6e20602546/file_downloaded", "12158d68-0050-4528-88db-5fb606b2151d/file_downloaded", "361df9ec-0542-4e05-8f2d-1c605a5a915a/file_downloaded", "2bcf46ae-0b07-4dd0-baf8-654a05a4aca7/file_downloaded", "6a514a78-8a8a-4cdf-947a-d1b01ced4b0d/file_downloaded", "a387810f-54fe-4493-8842-f3fbeea687fe/file_downloaded", "2401238c-ae37-4a99-81a8-50ba90110650/file_downloaded", "980a6702-c192-4a4e-b706-f3ec2fb5e800/file_downloaded", "c5691dae-5b10-4c67-8a58-2df8314c85ec/file_downloaded", "d4eabb32-8b28-461c-8248-a0bacf4e44f2/file_downloaded", "dd98fb48-c48f-4d72-85a9-38a2d8b2bb3f/file_downloaded", "fed31d0d-7c75-4073-82e5-2c9ba30daa5a/file_downloaded", "012853cb-0d7f-4135-8407-a99c4e022024/file_downloaded", "46d0466f-75bd-4646-af10-5215477339d8/file_downloaded", "d1adcbdd-1d11-43cd-a72a-6830e91b7c33/file_downloaded", "f3e9d4a5-dc9d-4112-8a67-b63b40c87e5c/file_downloaded", "825d2154-e892-474d-ae31-e490467dfa3c/file_downloaded", "bf62b3fd-fff7-4658-b143-9ec948fc256f/file_downloaded", "173dacc8-683c-42c0-b270-67f59c77d49d/file_downloaded", "f981cbad-84c9-42bb-bf19-978f12e6c972/file_downloaded", "d122bf02-98f7-46b2-9286-98473216d64e/file_downloaded", "50b68dd1-1037-4cb4-8d1a-025cff38da55/file_downloaded", "5f3e04b6-9bd5-4010-bc2f-ea16b7ac8b1c/file_downloaded", "f8d7ac40-7d0e-41ba-9788-4f973be5968b/file_downloaded", "d4adf4a7-1646-4530-85cb-66c2779e1cb6/file_downloaded", "6b1f740e-2b20-440f-9bec-344540d80d1d/file_downloaded", "7ea07af5-5cb8-4857-bf30-17a0d4f39f83/file_downloaded", "7ad1c5ab-9606-481c-a08e-0770798b224f/file_downloaded", "8d8c8fe9-7747-4ba2-b759-f27cf160b88f/file_downloaded", "143de683-9bce-43b9-b08e-2e16fea05a53/file_downloaded", "f3f5f798-0d01-41de-ad96-6a2e2d04eeb1/file_downloaded", "0dc1a52f-7770-4492-8dc7-27da1f9d2ec9/file_downloaded", "bba6f22f-1212-49c2-b07f-3b62ae435b4d/file_downloaded", "5928d70c-01f3-47ab-8f29-0484f9a014a2/file_downloaded", "6be306cb-1dfd-4fe8-912d-ec117ff0d70d/file_downloaded", "e49d38af-e262-46ef-ad44-c51c29ee2178/file_downloaded", ], [ "DiSCo_gradients.bvals", "DiSCo_gradients_dipy.bvecs", "DiSCo_gradients_fsl.bvecs", "DiSCo_gradients_mrtrix.b", "DiSCo_gradients.scheme", "lowRes_DiSCo2_DWI_RicianNoise-snr50.nii.gz", "lowRes_DiSCo2_Strand_Average_Diameter.nii.gz", "lowRes_DiSCo2_DWI_RicianNoise-snr40.nii.gz", "lowRes_DiSCo2_DWI.nii.gz", "lowRes_DiSCo2_ROIs.nii.gz", "lowRes_DiSCo2_mask.nii.gz", "lowRes_DiSCo2_DWI_Intra.nii.gz", "lowRes_DiSCo2_ROIs-mask.nii.gz", "lowRes_DiSCo2_Strand_Count.nii.gz", "lowRes_DiSCo2_DWI_RicianNoise-snr20.nii.gz", "lowRes_DiSCo2_DWI_RicianNoise-snr30.nii.gz", "lowRes_DiSCo2_Strand_Intra_Volume_Fraction.nii.gz", "lowRes_DiSCo2_DWI_RicianNoise-snr10.nii.gz", "lowRes_DiSCo2_Strand_ODFs.nii.gz", "lowRes_DiSCo2_Strand_Bundle_Count.nii.gz", "highRes_DiSCo2_DWI_RicianNoise-snr40.nii.gz", "highRes_DiSCo2_DWI_RicianNoise-snr50.nii.gz", "highRes_DiSCo2_ROIs-mask.nii.gz", "highRes_DiSCo2_Strand_ODFs.nii.gz", "highRes_DiSCo2_Strand_Count.nii.gz", "highRes_DiSCo2_ROIs.nii.gz", "highRes_DiSCo2_mask.nii.gz", "highRes_DiSCo2_Strand_Average_Diameter.nii.gz", "highRes_DiSCo2_DWI_RicianNoise-snr30.nii.gz", "highRes_DiSCo2_DWI_Intra.nii.gz", "highRes_DiSCo2_DWI_RicianNoise-snr20.nii.gz", "highRes_DiSCo2_DWI.nii.gz", "highRes_DiSCo2_Strand_Bundle_Count.nii.gz", "highRes_DiSCo2_DWI_RicianNoise-snr10.nii.gz", "highRes_DiSCo2_Strand_Intra_Volume_Fraction.nii.gz", "DiSCo2_Strands_Diameters.txt", "DiSCo2_Connectivity_Matrix_Strands_Count.txt", "DiSCo2_Strands_Trajectories.trk", "DiSCo2_Strands_ROIs_Pairs.txt", "DiSCo2_Strands_Trajectories.tck", "DiSCo2_Connectivity_Matrix_Cross-Sectional_Area.txt", ], md5_list=[ "c03cfec8ee605a54866ef09c3c8ba31d", "b8443aee0a2d2b60ee658a2342cccf0f", "4ac749bb584e6963851ee170e137e3ec", "207d57a6c16cdf230b45d4df5b4e1dee", "2346de6ad563a10e40b8ebec3ac4e0ff", "425a97bce000265d9e4868fcb54a6bd7", "7cb8fd4ae58973235903adfcf338cb87", "bb5ba3ba1163f4335dae76f905e181d0", "350fb02f7ceeaf95c5cd13a4721cef5f", "a8476809cca854668ae4dd3bfd1366ec", "e55bca1aef80039eafdadec4b8c3ff21", "5d9b46a5130a7734a2a0544ed1f5cc72", "90869179977e2b78bd0a8c4f016ee7e3", "c6207b65665f5b82a5413e65627156b3", "1f7e32d2780bbc1a2b5f7b592c9fd53b", "36de56a359a67ec68c15cc484d79e1da", "6ddfa6a7e5083cb71f3ae4d23711a6a8", "21f0cf235c8c1705e7bd9ebd9a39479a", "660f549e8180f17ea69de82661b427e9", "19c037c7813c7574b809baedd9bb64fd", "77a1f4111eefc01b26d7ec8b6473894d", "cde18c2581ced8755958a153332c375a", "88b12d4c24bd833430b3125340c96801", "4d70e9b246101f5f2ba8a44d92beb2e8", "c01bb0a1d2bdb95565b92eb022ff2124", "31f664676e94280c5ebdf04b544d200f", "41a3155f6fb44da50c515bb867006ab1", "9494f6a6f5c4e44b88051f0284757517", "5d9f8bd4a540891082f2dda976f70478", "8e2e5900008ae6923fe56447d7b493c7", "e961d27613acc250b6407d29d5020154", "ef330fa395d4e48d0286652927116275", "00c620b144253ef114fee1fe8e95a87f", "7e4cf83496996aefd9f27c6077c71d74", "e6be6c73425337e331fda4e4bdcbe749", "0b6c1770d48f39f704986ba69970541e", "69da5bb232b41dbeeea9d409ca94955f", "0b43ffcc46217da86a472a7b1e02ac06", "4e774e280cc57b1336e4fa9e479ee4ee", "cc5442ea2ff2ddfcd1330016e2a68399", "7f276c0276561df13c86008776faf6b2", ], doc=( "Download DISCO 2 dataset: The Diffusion-Simulated Connectivity " "Dataset. DOI: 10.17632/fgf86jdfg6.3" ), data_size="1.05 GB", use_headers=True, ) fetch_disco3_dataset = _make_fetcher( "fetch_disco3_dataset", pjoin(dipy_home, "disco", "disco_3"), "https://data.mendeley.com/public-files/datasets/fgf86jdfg6/files/", [ "028147aa-f17f-4514-80e6-24c7419da75e/file_downloaded", "e714ff30-be78-4284-b282-84ed011885de/file_downloaded", "a45ac785-4977-434b-b05e-c97ed4a1e6c7/file_downloaded", "c3d1de3e-6dcf-4142-99bf-4dd42d445a0a/file_downloaded", "35f025f6-d4ab-45e6-9f58-e7685862117f/file_downloaded", "3cc65986-2e64-4397-a34d-386dfe286a89/file_downloaded", "ac384df6-8e9a-4c44-89db-624f89c12015/file_downloaded", "7feb06e6-0bdc-4fba-b7df-c67c3cb43301/file_downloaded", "c8bddc43-f1f2-404c-98d4-9ab34380fc8f/file_downloaded", "00bdcd82-dde0-499d-9bef-581755ad7e57/file_downloaded", "8abbc092-9368-4154-9e20-b28e3b6d03b4/file_downloaded", "e0773f2f-7fbe-4139-8e71-2d3267360ab5/file_downloaded", "8670b9c4-9275-4da6-adbf-398889a606d7/file_downloaded", "ec2306f2-7d60-452a-82d8-66962ffb903d/file_downloaded", "00cf30d9-14fa-484b-b6e1-3d484e43a840/file_downloaded", "b61b83aa-522b-4239-9a7b-74c80aea3c07/file_downloaded", "75176143-5ddf-4dfa-b2cd-b87da0abfc7b/file_downloaded", "d5fe5abf-b72e-474a-9316-714e0739feec/file_downloaded", "45a139fc-2d99-4832-8d95-7a7df2acf711/file_downloaded", "68f30089-1bf9-45d9-82d8-d77855823229/file_downloaded", "4162d753-0d7c-4492-aa4f-88554ee64fed/file_downloaded", "5ca6e137-2e65-41cd-bb4b-e1d21dcb5a28/file_downloaded", "8e88dccf-d7b3-4692-ab0f-26810ba168e0/file_downloaded", "fd97249f-ab0b-4ffa-a3ba-c3d0b3b1c947/file_downloaded", "73636f0f-7fc6-48c9-a140-7a11df9847f2/file_downloaded", "186a2116-21a8-42fc-b6d1-f303b0ba0b69/file_downloaded", "e087b436-d1be-4c8d-8c56-3de9ef7fb054/file_downloaded", "305ae78b-725c-4bb1-b435-1bca70c18b6b/file_downloaded", "2e62eb11-660b-4f09-920d-f5ee1e25b02a/file_downloaded", "a35e33f5-f23a-48de-9c03-1560ce5fecbe/file_downloaded", "f1737350-0b46-468e-b78a-af9731eac720/file_downloaded", "86ba2b2c-2094-43ef-be3e-e286dca5c5bd/file_downloaded", "c5a4a685-c3d6-4ef2-9ec9-956fce821c9b/file_downloaded", "d84ec650-8c05-41a6-a4ef-a4e3a2f66dd3/file_downloaded", "7648b6ce-2bc8-4753-8e8c-399978d4e187/file_downloaded", "1b702c78-cbae-4ceb-a5f6-89c5cb0f4f88/file_downloaded", "835af619-7447-4247-8e5b-2e2895480add/file_downloaded", "99752985-840e-4ed2-b068-68f6be7af48f/file_downloaded", "c07c7b51-1eab-4852-8b36-bd9901f15d7a/file_downloaded", "af6f3bc0-a09a-461a-8e6b-6095d83110ea/file_downloaded", "482bcf8f-52eb-4bf8-83b4-765ed935ad81/file_downloaded", ], [ "DiSCo_gradients.bvals", "DiSCo_gradients_dipy.bvecs", "DiSCo_gradients_fsl.bvecs", "DiSCo_gradients_mrtrix.b", "DiSCo_gradients.scheme", "lowRes_DiSCo3_Strand_ODFs.nii.gz", "lowRes_DiSCo3_DWI_RicianNoise-snr10.nii.gz", "lowRes_DiSCo3_Strand_Intra_Volume_Fraction.nii.gz", "lowRes_DiSCo3_DWI_RicianNoise-snr30.nii.gz", "lowRes_DiSCo3_DWI_RicianNoise-snr20.nii.gz", "lowRes_DiSCo3_Strand_Average_Diameter.nii.gz", "lowRes_DiSCo3_DWI_Intra.nii.gz", "lowRes_DiSCo3_Strand_Count.nii.gz", "lowRes_DiSCo3_DWI.nii.gz", "lowRes_DiSCo3_Strand_Bundle_Count.nii.gz", "lowRes_DiSCo3_ROIs-mask.nii.gz", "lowRes_DiSCo3_DWI_RicianNoise-snr40.nii.gz", "lowRes_DiSCo3_mask.nii.gz", "lowRes_DiSCo3_DWI_RicianNoise-snr50.nii.gz", "lowRes_DiSCo3_ROIs.nii.gz", "highRes_DiSCo3_DWI_RicianNoise-snr10.nii.gz", "highRes_DiSCo3_Strand_Average_Diameter.nii.gz", "highRes_DiSCo3_Strand_Count.nii.gz", "highRes_DiSCo3_DWI_RicianNoise-snr20.nii.gz", "highRes_DiSCo3_DWI.nii.gz", "highRes_DiSCo3_DWI_RicianNoise-snr30.nii.gz", "highRes_DiSCo3_ROIs-mask.nii.gz", "highRes_DiSCo3_Strand_Intra_Volume_Fraction.nii.gz", "highRes_DiSCo3_Strand_Bundle_Count.nii.gz", "highRes_DiSCo3_DWI_Intra.nii.gz", "highRes_DiSCo3_DWI_RicianNoise-snr50.nii.gz", "highRes_DiSCo3_Strand_ODFs.nii.gz", "highRes_DiSCo3_mask.nii.gz", "highRes_DiSCo3_ROIs.nii.gz", "highRes_DiSCo3_DWI_RicianNoise-snr40.nii.gz", "DiSCo3_Connectivity_Matrix_Cross-Sectional_Area.txt", "DiSCo3_Strands_Trajectories.tck", "DiSCo3_Strands_Trajectories.trk", "DiSCo3_Strands_ROIs_Pairs.txt", "DiSCo3_Connectivity_Matrix_Strands_Count.txt", "DiSCo3_Strands_Diameters.txt", ], md5_list=[ "c03cfec8ee605a54866ef09c3c8ba31d", "b8443aee0a2d2b60ee658a2342cccf0f", "4ac749bb584e6963851ee170e137e3ec", "207d57a6c16cdf230b45d4df5b4e1dee", "2346de6ad563a10e40b8ebec3ac4e0ff", "acad92cebd780424280b5e38a5b41445", "c5ce15ea50d02621d2a3f27cde7cd208", "c827954b40279462b520edfb8cd2ced0", "f4e8fca1a434436ffe8fc4392d2e635b", "62606109e8a96f41208b45bffbe94aae", "a03bc8afe4d0348841c9fed5f03695b4", "85f60f649c6f3d4e6ae6bcf88053058d", "7fdec9c4f4fb740f595191a4d0202de7", "df04eb8f1ce0138f3c7f20488f4dbc00", "0bde3cefd74e4c3b4d28ec0d90bcadc9", "aa7bfbfc9ff454e7a466a01229b1377b", "218561e3ebbee2f08d4f3040ec2f12a9", "577ae9e407bb225dae48482a7f88bafb", "e85e6edf80bd07030f5a6c1769c84546", "49ed07d5fc60ee17a4a4019d7bea7d97", "aa86d752bec702172a54c1e8efe51d78", "df0dde6428f5c5146b5ce8f353865bca", "0f0b68b956415bbe06766e497ee77388", "44adc18b39d03b8d83f48cc572aaab78", "0460e6420739ae31b7076f5e1be5a1f1", "80c07379496d0f2aab66d8041a9c53b1", "0e3763e51612b56fa8dc933efc8d1971", "676f88a792d9034015a9613001c9bf02", "6f399bee3158613c74c1330cee5d9b0d", "534e64906cc2bf58ff4cf98ecd301dd5", "7d0f7513c85d766c45581f9fa8ab34a5", "01b4fe6c6e6459eac293a62428680e3b", "2bb5a0b24139f5448cdd51167ce33906", "bf6c5a26cb1061be91bec7fa73153cec", "e8911b580e7fc7e2d94d238f2c81c43b", "647714842c8dea4d192bdd7c2b41fd3b", "bba1e4283ed853eb484497db4b6da460", "d761384f8fed31c53197ce4916f32296", "3b119c1b8487da71412f3275616003dc", "47c300fcb48b882c124d69086b224956", "9e47185ae517f6f35daa1aa16c51ba45", ], doc=( "Download DISCO 3 dataset: The Diffusion-Simulated Connectivity " "Dataset. DOI: 10.17632/fgf86jdfg6.3" ), data_size="1.05 GB", use_headers=True, )
[docs] def fetch_disco_dataset(): """Download All DISCO datasets. Notes ----- see DOI: 10.17632/fgf86jdfg6.3 """ files_1, folder_1 = fetch_disco1_dataset() files_2, folder_2 = fetch_disco2_dataset() files_3, folder_3 = fetch_disco3_dataset() all_path = ( [pjoin(folder_1, f) for f in files_1] + [pjoin(folder_2, f) for f in files_2] + [pjoin(folder_3, f) for f in files_3] ) return all_path
[docs] @warning_for_keywords() def get_fnames(*, name="small_64D"): """Provide full paths to example or test datasets. Parameters ---------- name : str the filename/s of which dataset to return, one of: - 'small_64D' small region of interest nifti,bvecs,bvals 64 directions - 'small_101D' small region of interest nifti, bvecs, bvals 101 directions - 'aniso_vox' volume with anisotropic voxel size as Nifti - 'fornix' 300 tracks in Trackvis format (from Pittsburgh Brain Competition) - 'gqi_vectors' the scanner wave vectors needed for a GQI acquisitions of 101 directions tested on Siemens 3T Trio - 'small_25' small ROI (10x8x2) DTI data (b value 2000, 25 directions) - 'test_piesno' slice of N=8, K=14 diffusion data - 'reg_c' small 2D image used for validating registration - 'reg_o' small 2D image used for validation registration - 'cb_2' two vectorized cingulum bundles Returns ------- fnames : tuple filenames for dataset Examples -------- >>> import numpy as np >>> from dipy.io.image import load_nifti >>> from dipy.data import get_fnames >>> fimg, fbvals, fbvecs = get_fnames(name='small_101D') >>> bvals=np.loadtxt(fbvals) >>> bvecs=np.loadtxt(fbvecs).T >>> data, affine = load_nifti(fimg) >>> data.shape == (6, 10, 10, 102) True >>> bvals.shape == (102,) True >>> bvecs.shape == (102, 3) True """ DATA_DIR = pjoin(op.dirname(__file__), "files") if name == "small_64D": fbvals = pjoin(DATA_DIR, "small_64D.bval") fbvecs = pjoin(DATA_DIR, "small_64D.bvec") fimg = pjoin(DATA_DIR, "small_64D.nii") return fimg, fbvals, fbvecs if name == "55dir_grad": fbvals = pjoin(DATA_DIR, "55dir_grad.bval") fbvecs = pjoin(DATA_DIR, "55dir_grad.bvec") return fbvals, fbvecs if name == "small_101D": fbvals = pjoin(DATA_DIR, "small_101D.bval") fbvecs = pjoin(DATA_DIR, "small_101D.bvec") fimg = pjoin(DATA_DIR, "small_101D.nii.gz") return fimg, fbvals, fbvecs if name == "aniso_vox": return pjoin(DATA_DIR, "aniso_vox.nii.gz") if name == "ascm_test": return pjoin(DATA_DIR, "ascm_out_test.nii.gz") if name == "fornix": return pjoin(DATA_DIR, "tracks300.trk") if name == "gqi_vectors": return pjoin(DATA_DIR, "ScannerVectors_GQI101.txt") if name == "dsi515btable": return pjoin(DATA_DIR, "dsi515_b_table.txt") if name == "dsi4169btable": return pjoin(DATA_DIR, "dsi4169_b_table.txt") if name == "grad514": return pjoin(DATA_DIR, "grad_514.txt") if name == "small_25": fbvals = pjoin(DATA_DIR, "small_25.bval") fbvecs = pjoin(DATA_DIR, "small_25.bvec") fimg = pjoin(DATA_DIR, "small_25.nii.gz") return fimg, fbvals, fbvecs if name == "small_25_streamlines": fstreamlines = pjoin(DATA_DIR, "EuDX_small_25.trk") return fstreamlines if name == "S0_10": fimg = pjoin(DATA_DIR, "S0_10slices.nii.gz") return fimg if name == "test_piesno": fimg = pjoin(DATA_DIR, "test_piesno.nii.gz") return fimg if name == "reg_c": return pjoin(DATA_DIR, "C.npy") if name == "reg_o": return pjoin(DATA_DIR, "circle.npy") if name == "cb_2": return pjoin(DATA_DIR, "cb_2.npz") if name == "minimal_bundles": return pjoin(DATA_DIR, "minimal_bundles.zip") if name == "t1_coronal_slice": return pjoin(DATA_DIR, "t1_coronal_slice.npy") if name == "t-design": N = 45 return pjoin(DATA_DIR, f"tdesign{N}.txt") if name == "scil_b0": files, folder = fetch_scil_b0() files = files["datasets_multi-site_all_companies.zip"][2] files = [pjoin(folder, f) for f in files] return [f for f in files if op.isfile(f)] if name == "stanford_hardi": files, folder = fetch_stanford_hardi() fraw = pjoin(folder, "HARDI150.nii.gz") fbval = pjoin(folder, "HARDI150.bval") fbvec = pjoin(folder, "HARDI150.bvec") return fraw, fbval, fbvec if name == "taiwan_ntu_dsi": files, folder = fetch_taiwan_ntu_dsi() fraw = pjoin(folder, "DSI203.nii.gz") fbval = pjoin(folder, "DSI203.bval") fbvec = pjoin(folder, "DSI203.bvec") return fraw, fbval, fbvec if name == "sherbrooke_3shell": files, folder = fetch_sherbrooke_3shell() fraw = pjoin(folder, "HARDI193.nii.gz") fbval = pjoin(folder, "HARDI193.bval") fbvec = pjoin(folder, "HARDI193.bvec") return fraw, fbval, fbvec if name == "isbi2013_2shell": files, folder = fetch_isbi2013_2shell() fraw = pjoin(folder, "phantom64.nii.gz") fbval = pjoin(folder, "phantom64.bval") fbvec = pjoin(folder, "phantom64.bvec") return fraw, fbval, fbvec if name == "stanford_labels": files, folder = fetch_stanford_labels() return pjoin(folder, "aparc-reduced.nii.gz") if name == "syn_data": files, folder = fetch_syn_data() t1_name = pjoin(folder, "t1.nii.gz") b0_name = pjoin(folder, "b0.nii.gz") return t1_name, b0_name if name == "stanford_t1": files, folder = fetch_stanford_t1() return pjoin(folder, "t1.nii.gz") if name == "stanford_pve_maps": files, folder = fetch_stanford_pve_maps() f_pve_csf = pjoin(folder, "pve_csf.nii.gz") f_pve_gm = pjoin(folder, "pve_gm.nii.gz") f_pve_wm = pjoin(folder, "pve_wm.nii.gz") return f_pve_csf, f_pve_gm, f_pve_wm if name == "ivim": files, folder = fetch_ivim() fraw = pjoin(folder, "ivim.nii.gz") fbval = pjoin(folder, "ivim.bval") fbvec = pjoin(folder, "ivim.bvec") return fraw, fbval, fbvec if name == "tissue_data": files, folder = fetch_tissue_data() t1_name = pjoin(folder, "t1_brain.nii.gz") t1d_name = pjoin(folder, "t1_brain_denoised.nii.gz") ap_name = pjoin(folder, "power_map.nii.gz") return t1_name, t1d_name, ap_name if name == "cfin_multib": files, folder = fetch_cfin_multib() t1_name = pjoin(folder, "T1.nii") fraw = pjoin(folder, "__DTI_AX_ep2d_2_5_iso_33d_20141015095334_4.nii") fbval = pjoin(folder, "__DTI_AX_ep2d_2_5_iso_33d_20141015095334_4.bval") fbvec = pjoin(folder, "__DTI_AX_ep2d_2_5_iso_33d_20141015095334_4.bvec") return fraw, fbval, fbvec, t1_name if name == "target_tractrogram_hcp": files, folder = fetch_target_tractogram_hcp() return pjoin( folder, "target_tractogram_hcp", "hcp_tractogram", "streamlines.trk" ) if name == "bundle_atlas_hcp842": files, folder = fetch_bundle_atlas_hcp842() return get_bundle_atlas_hcp842() if name == "30_bundle_atlas_hcp842": files, folder = fetch_30_bundle_atlas_hcp842() return get_bundle_atlas_hcp842(size=30) if name == "qte_lte_pte": _, folder = fetch_qte_lte_pte() fdata = pjoin(folder, "lte-pte.nii.gz") fbval = pjoin(folder, "lte-pte.bval") fbvec = pjoin(folder, "lte-pte.bvec") fmask = pjoin(folder, "mask.nii.gz") return fdata, fbval, fbvec, fmask if name == "cti_rat1": _, folder = fetch_cti_rat1() fdata = pjoin(folder, "Rat1_invivo_cti_data.nii") fbval1 = pjoin(folder, "bvals1.bval") fbvec1 = pjoin(folder, "bvec1.bvec") fbval2 = pjoin(folder, "bvals2.bval") fbvec2 = pjoin(folder, "bvec2.bvec") fmask = pjoin(folder, "Rat1_mask.nii") return fdata, fbval1, fbvec1, fbval2, fbvec2, fmask if name == "fury_surface": files, folder = fetch_fury_surface() surface_name = pjoin(folder, "100307_white_lh.vtk") return surface_name if name == "histo_resdnn_tf_weights": files, folder = fetch_resdnn_tf_weights() wraw = pjoin(folder, "resdnn_weights_mri_2018.h5") return wraw if name == "histo_resdnn_torch_weights": files, folder = fetch_resdnn_torch_weights() wraw = pjoin(folder, "histo_weights.pth") return wraw if name == "synb0_default_weights": _, folder = fetch_synb0_weights() w1 = pjoin(folder, "synb0_default_weights1.h5") w2 = pjoin(folder, "synb0_default_weights2.h5") w3 = pjoin(folder, "synb0_default_weights3.h5") w4 = pjoin(folder, "synb0_default_weights4.h5") w5 = pjoin(folder, "synb0_default_weights5.h5") return w1, w2, w3, w4, w5 if name == "synb0_test_data": files, folder = fetch_synb0_test() input_array = pjoin(folder, "test_input_synb0.npz") target_array = pjoin(folder, "test_output_synb0.npz") return input_array, target_array if name == "deepn4_default_weights": _, folder = fetch_deepn4_weights() w1 = pjoin(folder, "model_weights.h5") return w1 if name == "deepn4_test_data": files, folder = fetch_deepn4_test() input_array = pjoin(folder, "test_input_deepn4.npz") target_array = pjoin(folder, "test_output_deepn4.npz") return input_array, target_array if name == "evac_default_tf_weights": files, folder = fetch_evac_tf_weights() weight = pjoin(folder, "evac_default_weights.h5") return weight if name == "evac_default_torch_weights": files, folder = fetch_evac_torch_weights() weight = pjoin(folder, "evac_weights.pth") return weight if name == "evac_test_data": files, folder = fetch_evac_test() test_data = pjoin(folder, "evac_test_data.npz") return test_data if name == "DiB_70_lte_pte_ste": _, folder = fetch_DiB_70_lte_pte_ste() fdata = pjoin(folder, "DiB_70_lte_pte_ste.nii.gz") fbval = pjoin(folder, "bval_DiB_70_lte_pte_ste.bval") fbvec = pjoin(folder, "bvec_DiB_70_lte_pte_ste.bvec") fmask = pjoin(folder, "DiB_mask.nii.gz") return fdata, fbval, fbvec, fmask if name == "DiB_217_lte_pte_ste": _, folder = fetch_DiB_217_lte_pte_ste() fdata_1 = pjoin(folder, "DiB_217_lte_pte_ste_1.nii.gz") fdata_2 = pjoin(folder, "DiB_217_lte_pte_ste_2.nii.gz") fbval = pjoin(folder, "bval_DiB_217_lte_pte_ste.bval") fbvec = pjoin(folder, "bvec_DiB_217_lte_pte_ste.bvec") fmask = pjoin(folder, "DiB_mask.nii.gz") return fdata_1, fdata_2, fbval, fbvec, fmask if name == "ptt_minimal_dataset": files, folder = fetch_ptt_minimal_dataset() fod_name = pjoin(folder, "ptt_fod.nii") seed_coords_name = pjoin(folder, "ptt_seed_coords.txt") seed_image_name = pjoin(folder, "ptt_seed_image.nii") return fod_name, seed_coords_name, seed_image_name if name == "gold_standard_tracks": filepath_dix = {} files, folder = fetch_gold_standard_io() for filename in files: filepath_dix[filename] = os.path.join(folder, filename) with open(filepath_dix["points_data.json"]) as json_file: points_data = dict(json.load(json_file)) with open(filepath_dix["streamlines_data.json"]) as json_file: streamlines_data = dict(json.load(json_file)) return filepath_dix, points_data, streamlines_data if name in ["disco", "disco1", "disco2", "disco3"]: local_fetcher = globals().get(f"fetch_{name}_dataset") files, folder = local_fetcher() return [pjoin(folder, f) for f in files]
[docs] def read_qtdMRI_test_retest_2subjects(): r"""Load test-retest qt-dMRI acquisitions of two C57Bl6 mice. These datasets were used to study test-retest reproducibility of time-dependent q-space indices (q$\tau$-indices) in the corpus callosum of two mice :footcite:p:`Fick2018`. The data itself and its details are publicly available and can be cited at :footcite:p:`Wassermann2017`. The test-retest diffusion MRI spin echo sequences were acquired from two C57Bl6 wild-type mice on an 11.7 Tesla Bruker scanner. The test and retest acquisition were taken 48 hours from each other. The (processed) data consists of 80x160x5 voxels of size 110x110x500μm. Each data set consists of 515 Diffusion-Weighted Images (DWIs) spread over 35 acquisition shells. The shells are spread over 7 gradient strength shells with a maximum gradient strength of 491 mT/m, 5 pulse separation shells between [10.8 - 20.0]ms, and a pulse length of 5ms. We manually created a brain mask and corrected the data from eddy currents and motion artifacts using FSL's eddy. A region of interest was then drawn in the middle slice in the corpus callosum, where the tissue is reasonably coherent. Returns ------- data : list of length 4 contains the dwi datasets ordered as (subject1_test, subject1_retest, subject2_test, subject2_retest) cc_masks : list of length 4 contains the corpus callosum masks ordered in the same order as data. gtabs : list of length 4 contains the qt-dMRI gradient tables of the data sets. References ---------- .. footbibliography:: """ data = [] data_names = [ "subject1_dwis_test.nii.gz", "subject1_dwis_retest.nii.gz", "subject2_dwis_test.nii.gz", "subject2_dwis_retest.nii.gz", ] for data_name in data_names: data_loc = pjoin(dipy_home, "qtdMRI_test_retest_2subjects", data_name) data.append(load_nifti_data(data_loc)) cc_masks = [] mask_names = [ "subject1_ccmask_test.nii.gz", "subject1_ccmask_retest.nii.gz", "subject2_ccmask_test.nii.gz", "subject2_ccmask_retest.nii.gz", ] for mask_name in mask_names: mask_loc = pjoin(dipy_home, "qtdMRI_test_retest_2subjects", mask_name) cc_masks.append(load_nifti_data(mask_loc)) gtabs = [] gtab_txt_names = [ "subject1_scheme_test.txt", "subject1_scheme_retest.txt", "subject2_scheme_test.txt", "subject2_scheme_retest.txt", ] for gtab_txt_name in gtab_txt_names: txt_loc = pjoin(dipy_home, "qtdMRI_test_retest_2subjects", gtab_txt_name) qtdmri_scheme = np.loadtxt(txt_loc, skiprows=1) bvecs = qtdmri_scheme[:, 1:4] G = qtdmri_scheme[:, 4] / 1e3 # because dipy takes T/mm not T/m small_delta = qtdmri_scheme[:, 5] big_delta = qtdmri_scheme[:, 6] gtab = gradient_table_from_gradient_strength_bvecs( G, bvecs, big_delta, small_delta ) gtabs.append(gtab) return data, cc_masks, gtabs
[docs] def read_scil_b0(): """Load GE 3T b0 image form the scil b0 dataset. Returns ------- img : obj, Nifti1Image """ fnames = get_fnames(name="scil_b0") return nib.load(fnames[0])
[docs] def read_siemens_scil_b0(): """Load Siemens 1.5T b0 image from the scil b0 dataset. Returns ------- img : obj, Nifti1Image """ fnames = get_fnames(name="scil_b0") return nib.load(fnames[1])
[docs] def read_isbi2013_2shell(): """Load ISBI 2013 2-shell synthetic dataset. Returns ------- img : obj, Nifti1Image gtab : obj, GradientTable """ fraw, fbval, fbvec = get_fnames(name="isbi2013_2shell") bvals, bvecs = read_bvals_bvecs(fbval, fbvec) gtab = gradient_table(bvals, bvecs=bvecs) img = nib.load(fraw) return img, gtab
[docs] def read_sherbrooke_3shell(): """Load Sherbrooke 3-shell HARDI dataset. Returns ------- img : obj, Nifti1Image gtab : obj, GradientTable """ fraw, fbval, fbvec = get_fnames(name="sherbrooke_3shell") bvals, bvecs = read_bvals_bvecs(fbval, fbvec) gtab = gradient_table(bvals, bvecs=bvecs) img = nib.load(fraw) return img, gtab
[docs] def read_stanford_labels(): """Read stanford hardi data and label map.""" # First get the hardi data hard_img, gtab = read_stanford_hardi() # Fetch and load labels_file = get_fnames(name="stanford_labels") labels_img = nib.load(labels_file) return hard_img, gtab, labels_img
[docs] def read_stanford_hardi(): """Load Stanford HARDI dataset. Returns ------- img : obj, Nifti1Image gtab : obj, GradientTable """ fraw, fbval, fbvec = get_fnames(name="stanford_hardi") bvals, bvecs = read_bvals_bvecs(fbval, fbvec) gtab = gradient_table(bvals, bvecs=bvecs) img = nib.load(fraw) return img, gtab
[docs] def read_stanford_t1(): f_t1 = get_fnames(name="stanford_t1") img = nib.load(f_t1) return img
[docs] def read_stanford_pve_maps(): f_pve_csf, f_pve_gm, f_pve_wm = get_fnames(name="stanford_pve_maps") img_pve_csf = nib.load(f_pve_csf) img_pve_gm = nib.load(f_pve_gm) img_pve_wm = nib.load(f_pve_wm) return img_pve_csf, img_pve_gm, img_pve_wm
[docs] def read_taiwan_ntu_dsi(): """Load Taiwan NTU dataset. Returns ------- img : obj, Nifti1Image gtab : obj, GradientTable """ fraw, fbval, fbvec = get_fnames(name="taiwan_ntu_dsi") bvals, bvecs = read_bvals_bvecs(fbval, fbvec) bvecs[1:] = bvecs[1:] / np.sqrt(np.sum(bvecs[1:] * bvecs[1:], axis=1))[:, None] gtab = gradient_table(bvals, bvecs=bvecs) img = nib.load(fraw) return img, gtab
[docs] def read_syn_data(): """Load t1 and b0 volumes from the same session. Returns ------- t1 : obj, Nifti1Image b0 : obj, Nifti1Image """ t1_name, b0_name = get_fnames(name="syn_data") t1 = nib.load(t1_name) b0 = nib.load(b0_name) return t1, b0
[docs] def fetch_tissue_data(): """Download images to be used for tissue classification""" t1 = "https://ndownloader.figshare.com/files/6965969" t1d = "https://ndownloader.figshare.com/files/6965981" ap = "https://ndownloader.figshare.com/files/6965984" folder = pjoin(dipy_home, "tissue_data") md5_list = [ "99c4b77267a6855cbfd96716d5d65b70", # t1 "4b87e1b02b19994fbd462490cc784fa3", # t1d "c0ea00ed7f2ff8b28740f18aa74bff6a", ] # ap url_list = [t1, t1d, ap] fname_list = ["t1_brain.nii.gz", "t1_brain_denoised.nii.gz", "power_map.nii.gz"] if not op.exists(folder): _log(f"Creating new directory {folder}") os.makedirs(folder) msg = "Downloading 3 Nifti1 images (9.3MB)..." _log(msg) for i in range(len(md5_list)): _get_file_data(pjoin(folder, fname_list[i]), url_list[i]) check_md5(pjoin(folder, fname_list[i]), md5_list[i]) _log("Done.") _log(f"Files copied in folder {folder}") else: _already_there_msg(folder) return fname_list, folder
[docs] @warning_for_keywords() def read_tissue_data(*, contrast="T1"): """Load images to be used for tissue classification Parameters ---------- contrast : str 'T1', 'T1 denoised' or 'Anisotropic Power' Returns ------- image : obj, Nifti1Image """ folder = pjoin(dipy_home, "tissue_data") t1_name = pjoin(folder, "t1_brain.nii.gz") t1d_name = pjoin(folder, "t1_brain_denoised.nii.gz") ap_name = pjoin(folder, "power_map.nii.gz") md5_dict = { "t1": "99c4b77267a6855cbfd96716d5d65b70", "t1d": "4b87e1b02b19994fbd462490cc784fa3", "ap": "c0ea00ed7f2ff8b28740f18aa74bff6a", } check_md5(t1_name, md5_dict["t1"]) check_md5(t1d_name, md5_dict["t1d"]) check_md5(ap_name, md5_dict["ap"]) if contrast == "T1 denoised": return nib.load(t1d_name) elif contrast == "Anisotropic Power": return nib.load(ap_name) else: return nib.load(t1_name)
mni_notes = """ Notes ----- The templates were downloaded from the MNI (McGill University) `website <https://www.bic.mni.mcgill.ca/ServicesAtlases/ICBM152NLin2009>`_ in July 2015. The following publications should be referenced when using these templates: - :footcite:t:`Fonov2013` - :footcite:t:`Fonov2009` **License for the MNI templates:** Copyright (C) 1993-2004, Louis Collins McConnell Brain Imaging Centre, Montreal Neurological Institute, McGill University. Permission to use, copy, modify, and distribute this software and its documentation for any purpose and without fee is hereby granted, provided that the above copyright notice appear in all copies. The authors and McGill University make no representations about the suitability of this software for any purpose. It is provided "as is" without express or implied warranty. The authors are not responsible for any data loss, equipment damage, property loss, or injury to subjects or patients resulting from the use or misuse of this software package. References ---------- .. footbibliography:: """
[docs] @warning_for_keywords() def read_mni_template(*, version="a", contrast="T2"): """Read the MNI template from disk. Parameters ---------- version: string There are two MNI templates 2009a and 2009c, so options available are: "a" and "c". contrast : list or string, optional Which of the contrast templates to read. For version "a" two contrasts are available: "T1" and "T2". Similarly for version "c" there are two options, "T1" and "mask". You can input contrast as a string or a list Returns ------- list : contains the nibabel.Nifti1Image objects requested, according to the order they were requested in the input. Examples -------- >>> # Get only the T1 file for version c: >>> T1 = read_mni_template("c", contrast = "T1") # doctest: +SKIP >>> # Get both files in this order for version a: >>> T1, T2 = read_mni_template(contrast = ["T1", "T2"]) # doctest: +SKIP """ files, folder = fetch_mni_template() file_dict_a = { "T1": pjoin(folder, "mni_icbm152_t1_tal_nlin_asym_09a.nii"), "T2": pjoin(folder, "mni_icbm152_t2_tal_nlin_asym_09a.nii"), } file_dict_c = { "T1": pjoin(folder, "mni_icbm152_t1_tal_nlin_asym_09c.nii"), "mask": pjoin(folder, "mni_icbm152_t1_tal_nlin_asym_09c_mask.nii"), } if contrast == "T2" and version == "c": raise ValueError("No T2 image for MNI template 2009c") if contrast == "mask" and version == "a": raise ValueError("No template mask available for MNI 2009a") if not isinstance(contrast, str) and version == "c": for k in contrast: if k == "T2": raise ValueError("No T2 image for MNI template 2009c") if version == "a": if isinstance(contrast, str): return nib.load(file_dict_a[contrast]) else: out_list = [] for k in contrast: out_list.append(nib.load(file_dict_a[k])) elif version == "c": if isinstance(contrast, str): return nib.load(file_dict_c[contrast]) else: out_list = [] for k in contrast: out_list.append(nib.load(file_dict_c[k])) else: raise ValueError("Only 2009a and 2009c versions are available") return out_list
# Add the references to both MNI-related functions: read_mni_template.__doc__ += mni_notes fetch_mni_template.__doc__ += mni_notes
[docs] @warning_for_keywords() def fetch_cenir_multib(*, with_raw=False): """Fetch 'HCP-like' data, collected at multiple b-values. Parameters ---------- with_raw : bool Whether to fetch the raw data. Per default, this is False, which means that only eddy-current/motion corrected data is fetched """ folder = pjoin(dipy_home, "cenir_multib") fname_list = [ "4D_dwi_eddycor_B200.nii.gz", "dwi_bvals_B200", "dwi_bvecs_B200", "4D_dwieddycor_B400.nii.gz", "bvals_B400", "bvecs_B400", "4D_dwieddycor_B1000.nii.gz", "bvals_B1000", "bvecs_B1000", "4D_dwieddycor_B2000.nii.gz", "bvals_B2000", "bvecs_B2000", "4D_dwieddycor_B3000.nii.gz", "bvals_B3000", "bvecs_B3000", ] md5_list = [ "fd704aa3deb83c1c7229202cb3db8c48", "80ae5df76a575fe5bf9f1164bb0d4cfb", "18e90f8a3e6a4db2457e5b1ba1cc98a9", "3d0f2b8ef7b6a4a3aa5c4f7a90c9cfec", "c38056c40c9cc42372232d6e75c47f54", "810d79b4c30cb7dff3b2000017d5f72a", "dde8037601a14436b2173f4345b5fd17", "97de6a492ae304f39e0b418b6ebac64c", "f28a0faa701bdfc66e31bde471a5b992", "c5e4b96e3afdee99c0e994eff3b2331a", "9c83b8d5caf9c3def240f320f2d2f56c", "05446bd261d57193d8dbc097e06db5ff", "f0d70456ce424fda2cecd48e64f3a151", "336accdb56acbbeff8dac1748d15ceb8", "27089f3baaf881d96f6a9da202e3d69b", ] if with_raw: fname_list.extend( [ "4D_dwi_B200.nii.gz", "4D_dwi_B400.nii.gz", "4D_dwi_B1000.nii.gz", "4D_dwi_B2000.nii.gz", "4D_dwi_B3000.nii.gz", ] ) md5_list.extend( [ "a8c36e76101f2da2ca8119474ded21d5", "a0e7939f6d977458afbb2f4659062a79", "87fc307bdc2e56e105dffc81b711a808", "7c23e8a5198624aa29455f0578025d4f", "4e4324c676f5a97b3ded8bbb100bf6e5", ] ) files = {} baseurl = UW_RW_URL + "1773/33311/" for f, m in zip(fname_list, md5_list): files[f] = (baseurl + f, m) fetch_data(files, folder) return files, folder
[docs] @warning_for_keywords() def read_cenir_multib(*, bvals=None): """Read CENIR multi b-value data. Parameters ---------- bvals : list or int The b-values to read from file (200, 400, 1000, 2000, 3000). Returns ------- gtab : a GradientTable class instance img : nibabel.Nifti1Image """ files, folder = fetch_cenir_multib(with_raw=False) if bvals is None: bvals = [200, 400, 1000, 2000, 3000] if isinstance(bvals, int): bvals = [bvals] file_dict = { 200: { "DWI": pjoin(folder, "4D_dwi_eddycor_B200.nii.gz"), "bvals": pjoin(folder, "dwi_bvals_B200"), "bvecs": pjoin(folder, "dwi_bvecs_B200"), }, 400: { "DWI": pjoin(folder, "4D_dwieddycor_B400.nii.gz"), "bvals": pjoin(folder, "bvals_B400"), "bvecs": pjoin(folder, "bvecs_B400"), }, 1000: { "DWI": pjoin(folder, "4D_dwieddycor_B1000.nii.gz"), "bvals": pjoin(folder, "bvals_B1000"), "bvecs": pjoin(folder, "bvecs_B1000"), }, 2000: { "DWI": pjoin(folder, "4D_dwieddycor_B2000.nii.gz"), "bvals": pjoin(folder, "bvals_B2000"), "bvecs": pjoin(folder, "bvecs_B2000"), }, 3000: { "DWI": pjoin(folder, "4D_dwieddycor_B3000.nii.gz"), "bvals": pjoin(folder, "bvals_B3000"), "bvecs": pjoin(folder, "bvecs_B3000"), }, } data = [] bval_list = [] bvec_list = [] for bval in bvals: data.append(load_nifti_data(file_dict[bval]["DWI"])) bval_list.extend(np.loadtxt(file_dict[bval]["bvals"])) bvec_list.append(np.loadtxt(file_dict[bval]["bvecs"])) # All affines are the same, so grab the last one: aff = nib.load(file_dict[bval]["DWI"]).affine return ( nib.Nifti1Image(np.concatenate(data, -1), aff), gradient_table(bval_list, bvecs=np.concatenate(bvec_list, -1)), )
CENIR_notes = """ Notes ----- Details of the acquisition and processing, and additional meta-data are available through UW researchworks: https://digital.lib.washington.edu/researchworks/handle/1773/33311 """ fetch_cenir_multib.__doc__ += CENIR_notes read_cenir_multib.__doc__ += CENIR_notes
[docs] @warning_for_keywords() def read_bundles_2_subjects( *, subj_id="subj_1", metrics=("fa",), bundles=("af.left", "cst.right", "cc_1") ): r"""Read images and streamlines from 2 subjects of the SNAIL dataset. See :footcite:p:`Renauld2016` and :footcite:p:`Garyfallidis2015` for further details about the dataset and processing pipeline. Parameters ---------- subj_id : string Either ``subj_1`` or ``subj_2``. metrics : array-like Either ['fa'] or ['t1'] or ['fa', 't1'] bundles : array-like E.g., ['af.left', 'cst.right', 'cc_1']. See all the available bundles in the ``exp_bundles_maps/bundles_2_subjects`` directory of your ``DIPY_HOME`` of ``$HOME/.dipy`` folder. Returns ------- dix : dict Dictionary with data of the metrics and the bundles as keys. Notes ----- If you are using these datasets please cite the following publications. References ---------- .. footbibliography:: """ dname = pjoin(dipy_home, "exp_bundles_and_maps", "bundles_2_subjects") from dipy.io.streamline import load_tractogram from dipy.tracking.streamline import Streamlines res = {} if "t1" in metrics: data, affine = load_nifti(pjoin(dname, subj_id, "t1_warped.nii.gz")) res["t1"] = data if "fa" in metrics: fa, affine = load_nifti(pjoin(dname, subj_id, "fa_1x1x1.nii.gz")) res["fa"] = fa res["affine"] = affine for bun in bundles: streams = load_tractogram( pjoin(dname, subj_id, "bundles", f"bundles_{bun}.trk"), "same", bbox_valid_check=False, ).streamlines streamlines = Streamlines(streams) res[bun] = streamlines return res
[docs] def read_ivim(): """Load IVIM dataset. Returns ------- img : obj, Nifti1Image gtab : obj, GradientTable """ fraw, fbval, fbvec = get_fnames(name="ivim") bvals, bvecs = read_bvals_bvecs(fbval, fbvec) gtab = gradient_table(bvals, bvecs=bvecs, b0_threshold=0) img = nib.load(fraw) return img, gtab
[docs] def read_cfin_dwi(): """Load CFIN multi b-value DWI data. Returns ------- img : obj, Nifti1Image gtab : obj, GradientTable """ fraw, fbval, fbvec, _ = get_fnames(name="cfin_multib") bvals, bvecs = read_bvals_bvecs(fbval, fbvec) gtab = gradient_table(bvals, bvecs=bvecs) img = nib.load(fraw) return img, gtab
[docs] def read_cfin_t1(): """Load CFIN T1-weighted data. Returns ------- img : obj, Nifti1Image """ _, _, _, fraw = get_fnames(name="cfin_multib") img = nib.load(fraw) return img # , gtab
[docs] def get_file_formats(): """ Returns ------- bundles_list : all bundles (list) ref_anat : reference """ ref_anat = pjoin(dipy_home, "bundle_file_formats_example", "template0.nii.gz") bundles_list = [] for filename in [ "cc_m_sub.trk", "laf_m_sub.tck", "lpt_m_sub.fib", "raf_m_sub.vtk", "rpt_m_sub.dpy", ]: bundles_list.append(pjoin(dipy_home, "bundle_file_formats_example", filename)) return bundles_list, ref_anat
[docs] @warning_for_keywords() def get_bundle_atlas_hcp842(*, size=80): """ Returns ------- file1 : string file2 : string """ size = 80 if size not in [80, 30] else size file1 = pjoin( dipy_home, "bundle_atlas_hcp842", f"Atlas_{size}_Bundles", "whole_brain", "whole_brain_MNI.trk", ) file2 = pjoin( dipy_home, "bundle_atlas_hcp842", f"Atlas_{size}_Bundles", "bundles", "*.trk" ) return file1, file2
[docs] def get_two_hcp842_bundles(): """ Returns ------- file1 : string file2 : string """ file1 = pjoin( dipy_home, "bundle_atlas_hcp842", "Atlas_80_Bundles", "bundles", "AF_L.trk" ) file2 = pjoin( dipy_home, "bundle_atlas_hcp842", "Atlas_80_Bundles", "bundles", "CST_L.trk" ) return file1, file2
[docs] def get_target_tractogram_hcp(): """ Returns ------- file1 : string """ file1 = pjoin( dipy_home, "target_tractogram_hcp", "hcp_tractogram", "streamlines.trk" ) return file1
[docs] def read_qte_lte_pte(): """Read q-space trajectory encoding data with linear and planar tensor encoding. Returns ------- data_img : nibabel.nifti1.Nifti1Image dMRI data image. mask_img : nibabel.nifti1.Nifti1Image Brain mask image. gtab : dipy.core.gradients.GradientTable Gradient table. """ fdata, fbval, fbvec, fmask = get_fnames(name="qte_lte_pte") data_img = nib.load(fdata) mask_img = nib.load(fmask) bvals = np.loadtxt(fbval) bvecs = np.loadtxt(fbvec) btens = np.array(["LTE" for i in range(61)] + ["PTE" for i in range(61)]) gtab = gradient_table(bvals, bvecs=bvecs, btens=btens) return data_img, mask_img, gtab
[docs] def read_DiB_70_lte_pte_ste(): """Read q-space trajectory encoding data with 70 between linear, planar, and spherical tensor encoding measurements. Returns ------- data_img : nibabel.nifti1.Nifti1Image dMRI data image. mask_img : nibabel.nifti1.Nifti1Image Brain mask image. gtab : dipy.core.gradients.GradientTable Gradient table. """ fdata, fbval, fbvec, fmask = get_fnames(name="DiB_70_lte_pte_ste") data_img = nib.load(fdata) mask_img = nib.load(fmask) bvals = np.loadtxt(fbval) bvecs = np.loadtxt(fbvec) btens = np.array( ["LTE" for i in range(1)] + ["LTE" for i in range(4)] + ["PTE" for i in range(3)] + ["STE" for i in range(3)] + ["STE" for i in range(4)] + ["LTE" for i in range(8)] + ["PTE" for i in range(5)] + ["STE" for i in range(5)] + ["LTE" for i in range(21)] + ["PTE" for i in range(10)] + ["STE" for i in range(6)] ) gtab = gradient_table(bvals, bvecs=bvecs, btens=btens) return data_img, mask_img, gtab
[docs] def read_DiB_217_lte_pte_ste(): """Read q-space trajectory encoding data with 217 between linear, planar, and spherical tensor encoding. Returns ------- data_img : nibabel.nifti1.Nifti1Image dMRI data image. mask_img : nibabel.nifti1.Nifti1Image Brain mask image. gtab : dipy.core.gradients.GradientTable Gradient table. """ fdata_1, fdata_2, fbval, fbvec, fmask = get_fnames(name="DiB_217_lte_pte_ste") _, folder = fetch_DiB_217_lte_pte_ste() if op.isfile(pjoin(folder, "DiB_217_lte_pte_ste.nii.gz")): data_img = nib.load(pjoin(folder, "DiB_217_lte_pte_ste.nii.gz")) else: data_1, affine = load_nifti(fdata_1) data_2, _ = load_nifti(fdata_2) data = np.concatenate((data_1, data_2), axis=3) save_nifti(pjoin(folder, "DiB_217_lte_pte_ste.nii.gz"), data, affine) data_img = nib.load(pjoin(folder, "DiB_217_lte_pte_ste.nii.gz")) mask_img = nib.load(fmask) bvals = np.loadtxt(fbval) bvecs = np.loadtxt(fbvec) btens = np.array( ["LTE" for i in range(13)] + ["LTE" for i in range(10)] + ["PTE" for i in range(10)] + ["STE" for i in range(10)] + ["LTE" for i in range(10)] + ["PTE" for i in range(10)] + ["STE" for i in range(10)] + ["LTE" for i in range(16)] + ["PTE" for i in range(16)] + ["STE" for i in range(10)] + ["LTE" for i in range(46)] + ["PTE" for i in range(46)] + ["STE" for i in range(10)] ) gtab = gradient_table(bvals, bvecs=bvecs, btens=btens) return data_img, mask_img, gtab
[docs] def extract_example_tracts(out_dir): """Extract 5 'AF_L','CST_R' and 'CC_ForcepsMajor' trk files in out_dir folder. Parameters ---------- out_dir : str Folder in which to extract the files. """ fname = get_fnames(name="minimal_bundles") with zipfile.ZipFile(fname, "r") as zip_obj: zip_obj.extractall(out_dir)
[docs] def read_five_af_bundles(): """Load 5 small left arcuate fasciculus bundles. Returns ------- bundles: list of ArraySequence List with loaded bundles. """ subjects = ["sub_1", "sub_2", "sub_3", "sub_4", "sub_5"] with tempfile.TemporaryDirectory() as temp_dir: extract_example_tracts(temp_dir) bundles = [] for sub in subjects: fname = pjoin(temp_dir, sub, "AF_L.trk") bundle_obj = load_trk(fname, "same", bbox_valid_check=False) bundles.append(bundle_obj.streamlines) return bundles
[docs] @warning_for_keywords() def to_bids_description( path, *, fname="dataset_description.json", BIDSVersion="1.4.0", **kwargs ): """Dumps a dict into a bids description at the given location""" kwargs.update({"BIDSVersion": BIDSVersion}) desc_file = op.join(path, fname) with open(desc_file, "w") as outfile: json.dump(kwargs, outfile)
[docs] def fetch_hcp( subjects, hcp_bucket="hcp-openaccess", profile_name="hcp", path=None, study="HCP_1200", aws_access_key_id=None, aws_secret_access_key=None, ): """ Fetch HCP diffusion data and arrange it in a manner that resembles the BIDS specification. See :footcite:p:`Gorgolewski2016` for details about the BIDS specification. Parameters ---------- subjects : list Each item is an integer, identifying one of the HCP subjects hcp_bucket : string, optional The name of the HCP S3 bucket. profile_name : string, optional The name of the AWS profile used for access. path : string, optional Path to save files into. Defaults to the value of the ``DIPY_HOME`` environment variable is set; otherwise, defaults to ``$HOME/.dipy``. study : string, optional Which HCP study to grab. aws_access_key_id : string, optional AWS credentials to HCP AWS S3. Will only be used if `profile_name` is set to False. aws_secret_access_key : string, optional AWS credentials to HCP AWS S3. Will only be used if `profile_name` is set to False. Returns ------- dict with remote and local names of these files, path to BIDS derivative dataset Notes ----- To use this function with its default setting, you need to have a file '~/.aws/credentials', that includes a section: [hcp] AWS_ACCESS_KEY_ID=XXXXXXXXXXXXXXXX AWS_SECRET_ACCESS_KEY=XXXXXXXXXXXXXXXX The keys are credentials that you can get from HCP (see https://wiki.humanconnectome.org/display/PublicData/How+To+Connect+to+Connectome+Data+via+AWS) Local filenames are changed to match our expected conventions. References ---------- .. footbibliography:: """ # noqa: E501 if not has_boto3: raise ValueError( "'fetch_hcp' requires boto3 and it is" " not currently installed. Please install" "it using `pip install boto3`. " ) if profile_name: boto3.setup_default_session(profile_name=profile_name) elif aws_access_key_id is not None and aws_secret_access_key is not None: boto3.setup_default_session( aws_access_key_id=aws_access_key_id, aws_secret_access_key=aws_secret_access_key, ) else: raise ValueError( "Must provide either a `profile_name` or ", "both `aws_access_key_id` and ", "`aws_secret_access_key` as input to 'fetch_hcp'", ) s3 = boto3.resource("s3") bucket = s3.Bucket(hcp_bucket) if path is None: if not op.exists(dipy_home): os.mkdir(dipy_home) my_path = dipy_home else: my_path = path base_dir = pjoin(my_path, study, "derivatives", "hcp_pipeline") if not op.exists(base_dir): os.makedirs(base_dir, exist_ok=True) data_files = {} # If user provided incorrect input, these are typical failures that # are easy to recover from: if isinstance(subjects, (int, str)): subjects = [subjects] for subject in subjects: sub_dir = pjoin(base_dir, f"sub-{subject}") if not op.exists(sub_dir): os.makedirs(pjoin(sub_dir, "dwi"), exist_ok=True) os.makedirs(pjoin(sub_dir, "anat"), exist_ok=True) data_files[pjoin(sub_dir, "dwi", f"sub-{subject}_dwi.bval")] = ( f"{study}/{subject}/T1w/Diffusion/bvals" ) data_files[pjoin(sub_dir, "dwi", f"sub-{subject}_dwi.bvec")] = ( f"{study}/{subject}/T1w/Diffusion/bvecs" ) data_files[pjoin(sub_dir, "dwi", f"sub-{subject}_dwi.nii.gz")] = ( f"{study}/{subject}/T1w/Diffusion/data.nii.gz" ) data_files[pjoin(sub_dir, "anat", f"sub-{subject}_T1w.nii.gz")] = ( f"{study}/{subject}/T1w/T1w_acpc_dc.nii.gz" ) data_files[pjoin(sub_dir, "anat", f"sub-{subject}_aparc+aseg_seg.nii.gz")] = ( f"{study}/{subject}/T1w/aparc+aseg.nii.gz" ) download_files = {} for k in data_files.keys(): if not op.exists(k): download_files[k] = data_files[k] if len(download_files.keys()): with tqdm(total=len(download_files.keys())) as pbar: for k in download_files.keys(): pbar.set_description_str(f"Downloading {k}") bucket.download_file(download_files[k], k) pbar.update() # Create the BIDS dataset description file text hcp_acknowledgements = ( "Data were provided by the Human Connectome Project, WU-Minn Consortium" " (Principal Investigators: David Van Essen and Kamil Ugurbil; 1U54MH091657)" " funded by the 16 NIH Institutes and Centers that support the NIH Blueprint" " for Neuroscience Research; and by the McDonnell Center for Systems" " Neuroscience at Washington University.", ) to_bids_description( pjoin(my_path, study), **{ "Name": study, "Acknowledgements": hcp_acknowledgements, "Subjects": subjects, }, ) # Create the BIDS derivatives description file text to_bids_description( base_dir, **{ "Name": study, "Acknowledgements": hcp_acknowledgements, "GeneratedBy": [{"Name": "hcp_pipeline"}], }, ) return data_files, pjoin(my_path, study)
def _hbn_downloader(my_path, derivative, subjects, client): base_dir = op.join(my_path, "HBN", "derivatives", derivative) if not os.path.exists(base_dir): os.makedirs(base_dir, exist_ok=True) data_files = {} for subject in subjects: initial_query = client.list_objects( Bucket="fcp-indi", Prefix=f"data/Projects/HBN/BIDS_curated/sub-{subject}/" ) ses = initial_query.get("Contents", None) if ses is None: raise ValueError(f"Could not find data for subject {subject}") else: ses = ses[0]["Key"].split("/")[5] query = client.list_objects( Bucket="fcp-indi", Prefix=f"data/Projects/HBN/BIDS_curated/derivatives/{derivative}/sub-{subject}/", ) # noqa query_content = query.get("Contents", None) if query_content is None: raise ValueError(f"Could not find derivatives data for subject {subject}") file_list = [kk["Key"] for kk in query["Contents"]] sub_dir = op.join(base_dir, f"sub-{subject}") ses_dir = op.join(sub_dir, ses) if derivative == "qsiprep": if not os.path.exists(sub_dir): os.makedirs(os.path.join(sub_dir, "anat"), exist_ok=True) os.makedirs(os.path.join(sub_dir, "figures"), exist_ok=True) os.makedirs(os.path.join(ses_dir, "dwi"), exist_ok=True) os.makedirs(os.path.join(ses_dir, "anat"), exist_ok=True) if derivative == "afq": if not os.path.exists(sub_dir): os.makedirs(os.path.join(ses_dir, "bundles"), exist_ok=True) os.makedirs(os.path.join(ses_dir, "clean_bundles"), exist_ok=True) os.makedirs(os.path.join(ses_dir, "ROIs"), exist_ok=True) os.makedirs(os.path.join(ses_dir, "tract_profile_plots"), exist_ok=True) os.makedirs(os.path.join(ses_dir, "viz_bundles"), exist_ok=True) for remote in file_list: full = remote.split("Projects")[-1][1:].replace("/BIDS_curated", "") local = op.join(my_path, full) data_files[local] = remote download_files = {} for k in data_files.keys(): if not op.exists(k): download_files[k] = data_files[k] if len(download_files.keys()): with tqdm(total=len(download_files.keys())) as pbar: for k in download_files.keys(): pbar.set_description_str(f"Downloading {k}") client.download_file("fcp-indi", download_files[k], k) pbar.update() # Create the BIDS dataset description file text to_bids_description( op.join(my_path, "HBN"), **{"Name": "HBN", "Subjects": subjects} ) # Create the BIDS derivatives description file text to_bids_description( base_dir, **{"Name": "HBN", "PipelineDescription": {"Name": "qsiprep"}} ) return data_files
[docs] def fetch_hbn(subjects, *, path=None, include_afq=False): """ Fetch preprocessed data from the Healthy Brain Network POD2 study. See :footcite:p:`Alexander2017` and :footcite:p:`RichieHalford2022` for further details about the study and processing pipeline. Parameters ---------- subjects : list Identifiers of the subjects to download. For example: ["NDARAA948VFH", "NDAREK918EC2"]. path : string, optional Path to save files into. Defaults to the value of the ``DIPY_HOME`` environment variable is set; otherwise, defaults to ``$HOME/.dipy``. include_afq : bool, optional Whether to include pyAFQ derivatives Returns ------- dict with remote and local names of these files, path to BIDS derivative dataset References ---------- .. footbibliography:: """ if has_boto3: from botocore import UNSIGNED from botocore.client import Config else: TripWire( "The `fetch_hbn` function requires the boto3" + " library, but that is not installed." ) # Anonymous access: client = boto3.client("s3", config=Config(signature_version=UNSIGNED)) if path is None: if not op.exists(dipy_home): os.mkdir(dipy_home) my_path = dipy_home else: my_path = path # If user provided incorrect input, these are typical failures that # are easy to recover from: if isinstance(subjects, (int, str)): subjects = [subjects] data_files = _hbn_downloader(my_path, "qsiprep", subjects, client) if include_afq: data_files.update(_hbn_downloader(my_path, "afq", subjects, client)) return data_files, pjoin(my_path, "HBN")