Source code for dipy.reconst.gqi

"""Classes and functions for generalized q-sampling"""

import warnings

import numpy as np

from dipy.reconst.cache import Cache
from dipy.reconst.multi_voxel import multi_voxel_fit
from dipy.reconst.odf import OdfFit, OdfModel
from dipy.testing.decorators import warning_for_keywords


[docs] class GeneralizedQSamplingModel(OdfModel, Cache): @warning_for_keywords() def __init__( self, gtab, *, method="gqi2", sampling_length=1.2, normalize_peaks=False ): r"""Generalized Q-Sampling Imaging. See :footcite:t:`Yeh2010` for further details about the model. This model has the same assumptions as the DSI method i.e. Cartesian grid sampling in q-space and fast gradient switching. Implements equations 2.14 from :footcite:p:`Garyfallidis2012b` for standard GQI and equation 2.16 from :footcite:p:`Garyfallidis2012b` for GQI2. You can think of GQI2 as an analytical solution of the DSI ODF. Parameters ---------- gtab : object, GradientTable method : str, optional 'standard' or 'gqi2' sampling_length : float, optional diffusion sampling length (lambda in eq. 2.14 and 2.16) normalize_peaks : bool, optional True to normalize peaks. Notes ----- As of version 0.9, range of the sampling length in GQI2 has changed to match the same scale used in the 'standard' method :footcite:t:`Yeh2010`. This means that the value of `sampling_length` should be approximately 1 - 1.3 (see :footcite:t:`Yeh2010`, pg. 1628). References ---------- .. footbibliography:: Examples -------- Here we create an example where we provide the data, a gradient table and a reconstruction sphere and calculate the ODF for the first voxel in the data. >>> from dipy.data import dsi_voxels >>> data, gtab = dsi_voxels() >>> from dipy.core.subdivide_octahedron import create_unit_sphere >>> sphere = create_unit_sphere(recursion_level=5) >>> from dipy.reconst.gqi import GeneralizedQSamplingModel >>> gq = GeneralizedQSamplingModel(gtab, method='gqi2', sampling_length=1.1) >>> voxel_signal = data[0, 0, 0] >>> odf = gq.fit(voxel_signal).odf(sphere) See Also -------- dipy.reconst.dsi.DiffusionSpectrumModel """ OdfModel.__init__(self, gtab) self.method = method self.Lambda = sampling_length self.normalize_peaks = normalize_peaks # 0.01506 = 6*D where D is the free water diffusion coefficient # l_values sqrt(6 D tau) D free water diffusion coefficient and # tau included in the b-value scaling = np.sqrt(self.gtab.bvals * 0.01506) tmp = np.tile(scaling, (3, 1)) gradsT = self.gtab.bvecs.T b_vector = gradsT * tmp # element-wise product self.b_vector = b_vector.T @multi_voxel_fit def fit(self, data, **kwargs): return GeneralizedQSamplingFit(self, data)
[docs] class GeneralizedQSamplingFit(OdfFit): def __init__(self, model, data): """Calculates PDF and ODF for a single voxel Parameters ---------- model : object, DiffusionSpectrumModel data : 1d ndarray, signal values """ OdfFit.__init__(self, model, data) self._gfa = None self.npeaks = 5 self._peak_values = None self._peak_indices = None self._qa = None
[docs] def odf(self, sphere): """Calculates the discrete ODF for a given discrete sphere.""" self.gqi_vector = self.model.cache_get("gqi_vector", key=sphere) if self.gqi_vector is None: if self.model.method == "gqi2": H = squared_radial_component # print self.gqi_vector.shape self.gqi_vector = np.real( H( np.dot(self.model.b_vector, sphere.vertices.T) * self.model.Lambda ) ) if self.model.method == "standard": self.gqi_vector = np.real( np.sinc( np.dot(self.model.b_vector, sphere.vertices.T) * self.model.Lambda / np.pi ) ) self.model.cache_set("gqi_vector", sphere, self.gqi_vector) return np.dot(self.data, self.gqi_vector)
[docs] @warning_for_keywords() def normalize_qa(qa, *, max_qa=None): """Normalize quantitative anisotropy. Used mostly with GQI rather than GQI2. Parameters ---------- qa : array, shape (X, Y, Z, N) where N is the maximum number of peaks stored max_qa : float, maximum qa value. Usually found in the CSF (corticospinal fluid). Returns ------- nqa : array, shape (x, Y, Z, N) normalized quantitative anisotropy Notes ----- Normalized quantitative anisotropy has the very useful property to be very small near gray matter and background areas. Therefore, it can be used to mask out white matter areas. """ if max_qa is None: return qa / qa.max() return qa / max_qa
[docs] @warning_for_keywords() def squared_radial_component(x, *, tol=0.01): """Part of the GQI2 integral Eq.8 in the referenced paper by :footcite:t:`Yeh2010`. References ---------- .. footbibliography:: """ with warnings.catch_warnings(): warnings.simplefilter("ignore") result = (2 * x * np.cos(x) + (x * x - 2) * np.sin(x)) / (x**3) x_near_zero = (x < tol) & (x > -tol) return np.where(x_near_zero, 1.0 / 3, result)
[docs] @warning_for_keywords() def npa(self, odf, *, width=5): """non-parametric anisotropy Nimmo-Smith et al. ISMRM 2011 """ # odf = self.odf(s) t0, t1, t2 = triple_odf_maxima(self.odf_vertices, odf, width) psi0 = t0[1] ** 2 psi1 = t1[1] ** 2 psi2 = t2[1] ** 2 npa = np.sqrt( (psi0 - psi1) ** 2 + (psi1 - psi2) ** 2 + (psi2 - psi0) ** 2 ) / np.sqrt(2 * (psi0**2 + psi1**2 + psi2**2)) # print 'tom >>>> ',t0,t1,t2,npa return t0, t1, t2, npa
[docs] @warning_for_keywords() def equatorial_zone_vertices(vertices, pole, *, width=5): """ finds the 'vertices' in the equatorial zone conjugate to 'pole' with width half 'width' degrees """ return [ i for i, v in enumerate(vertices) if np.abs(np.dot(v, pole)) < np.abs(np.sin(np.pi * width / 180)) ]
[docs] @warning_for_keywords() def polar_zone_vertices(vertices, pole, *, width=5): """ finds the 'vertices' in the equatorial band around the 'pole' of radius 'width' degrees """ return [ i for i, v in enumerate(vertices) if np.abs(np.dot(v, pole)) > np.abs(np.cos(np.pi * width / 180)) ]
[docs] def upper_hemi_map(v): """ maps a 3-vector into the z-upper hemisphere """ return np.sign(v[2]) * v
[docs] def equatorial_maximum(vertices, odf, pole, width): eqvert = equatorial_zone_vertices(vertices, pole, width) # need to test for whether eqvert is empty or not if len(eqvert) == 0: print( f"empty equatorial band at {np.array_str(pole)} pole with width {width:f}" ) return None, None eqvals = [odf[i] for i in eqvert] eqargmax = np.argmax(eqvals) eqvertmax = eqvert[eqargmax] eqvalmax = eqvals[eqargmax] return eqvertmax, eqvalmax
[docs] def patch_vertices(vertices, pole, width): """ find 'vertices' within the cone of 'width' degrees around 'pole' """ return [ i for i, v in enumerate(vertices) if np.abs(np.dot(v, pole)) > np.abs(np.cos(np.pi * width / 180)) ]
[docs] def patch_maximum(vertices, odf, pole, width): eqvert = patch_vertices(vertices, pole, width) # need to test for whether eqvert is empty or not if len(eqvert) == 0: print(f"empty cone around pole {np.array_str(pole)} with with width {width:f}") return np.Null, np.Null eqvals = [odf[i] for i in eqvert] eqargmax = np.argmax(eqvals) eqvertmax = eqvert[eqargmax] eqvalmax = eqvals[eqargmax] return eqvertmax, eqvalmax
[docs] def odf_sum(odf): return np.sum(odf)
[docs] def patch_sum(vertices, odf, pole, width): eqvert = patch_vertices(vertices, pole, width) # need to test for whether eqvert is empty or not if len(eqvert) == 0: print(f"empty cone around pole {np.array_str(pole)} with with width {width:f}") return np.Null return np.sum([odf[i] for i in eqvert])
[docs] def triple_odf_maxima(vertices, odf, width): indmax1 = np.argmax([odf[i] for i, v in enumerate(vertices)]) odfmax1 = odf[indmax1] pole = vertices[indmax1] eqvert = equatorial_zone_vertices(vertices, pole, width) indmax2, odfmax2 = equatorial_maximum(vertices, odf, pole, width) indmax3 = eqvert[ np.argmin([np.abs(np.dot(vertices[indmax2], vertices[p])) for p in eqvert]) ] odfmax3 = odf[indmax3] """ cross12 = np.cross(vertices[indmax1],vertices[indmax2]) cross12 = cross12/np.sqrt(np.sum(cross12**2)) indmax3, odfmax3 = patch_maximum(vertices, odf, cross12, 2*width) """ return [(indmax1, odfmax1), (indmax2, odfmax2), (indmax3, odfmax3)]