Source code for dipy.reconst.mapmri

import numpy as np
from scipy.special import gamma, genlaguerre, hermite

from dipy.reconst.base import ReconstFit, ReconstModel
from dipy.reconst.cache import Cache
from dipy.reconst.multi_voxel import multi_voxel_fit

try:  # preferred scipy >= 0.14, required scipy >= 1.0
    from scipy.special import factorial as sfactorial, factorial2
except ImportError:
    from scipy.misc import factorial as sfactorial, factorial2
from math import factorial as mfactorial
from warnings import warn

from dipy.core.geometry import cart2sphere
from dipy.core.gradients import gradient_table
from dipy.core.optimize import Optimizer, PositiveDefiniteLeastSquares
from dipy.data import load_sdp_constraints
import dipy.reconst.dti as dti
from dipy.reconst.shm import real_sh_descoteaux_from_index, sph_harm_ind_list
from dipy.testing.decorators import warning_for_keywords
from dipy.utils.optpkg import optional_package

cvxpy, have_cvxpy, _ = optional_package("cvxpy", min_version="1.4.1")


[docs] class MapmriModel(ReconstModel, Cache): r"""Mean Apparent Propagator MRI (MAPMRI) of the diffusion signal. The main idea in MAPMRI footcite:p:`Ozarslan2013` is to model the diffusion signal as a linear combination of the continuous functions presented in footcite:p:`Ozarslan2008` but extending it in three dimensions. The main difference with the SHORE proposed in footcite:p:`Merlet2013` is that MAPMRI 3D extension is provided using a set of three basis functions for the radial part, one for the signal along x, one for y and one for z, while footcite:p:`Merlet2013` uses one basis function to model the radial part and real Spherical Harmonics to model the angular part. From the MAPMRI coefficients is possible to use the analytical formulae to estimate the ODF. See :footcite:p:`Avram2015` for additional tissue microstructure insights provided by MAPMRI. See also footcite:p:`Fick2016b`, footcite:p:`Cheng2012`, footcite:p:`Hosseinbor2013`, footcite:p:`Craven1979`, and footcite:p:`DelaHaije2020` for additional insight into to the model. References ---------- .. footbibliography:: """ @warning_for_keywords() def __init__( self, gtab, *, radial_order=6, laplacian_regularization=True, laplacian_weighting=0.2, positivity_constraint=False, global_constraints=False, pos_grid=15, pos_radius="adaptive", anisotropic_scaling=True, eigenvalue_threshold=1e-04, bval_threshold=np.inf, dti_scale_estimation=True, static_diffusivity=0.7e-3, cvxpy_solver=None, ): r"""Analytical and continuous modeling of the diffusion signal with respect to the MAPMRI basis. The main idea of the MAPMRI :footcite:p:`Ozarslan2013` is to model the diffusion signal as a linear combination of the continuous functions presented in :footcite:p:`Ozarslan2008` but extending it in three dimensions. The main difference with the SHORE proposed in :footcite:p:`Ozarslan2009` is that MAPMRI 3D extension is provided using a set of three basis functions for the radial part, one for the signal along x, one for y and one for z, while :footcite:p:`Ozarslan2009` uses one basis function to model the radial part and real Spherical Harmonics to model the angular part. From the MAPMRI coefficients it is possible to estimate various q-space indices, the PDF and the ODF. The fitting procedure can be constrained using the positivity constraint proposed in :footcite:p:`Ozarslan2013` or :footcite:p:`DelaHaije2020` and/or the laplacian regularization proposed in :footcite:p:`Fick2016b`. For the estimation of q-space indices we recommend using the 'regular' anisotropic implementation of MAPMRI. However, it has been shown that the ODF estimation in this implementation has a bias which 'squeezes together' the ODF peaks when there is a crossing at an angle smaller than 90 degrees :footcite:p:`Fick2016b`. When you want to estimate ODFs for tractography we therefore recommend using the isotropic implementation (which is equivalent to :footcite:p:`Ozarslan2009`). The switch between isotropic and anisotropic can be easily made through the anisotropic_scaling option. Parameters ---------- gtab : GradientTable, gradient directions and bvalues container class. the gradient table has to include b0-images. radial_order : unsigned int, an even integer that represent the order of the basis laplacian_regularization: bool, Regularize using the Laplacian of the MAP-MRI basis. laplacian_weighting: string or scalar, The string 'GCV' makes it use generalized cross-validation :footcite:p:`Craven1979` to find the regularization weight :footcite:p:`DelaHaije2020`. A scalar sets the regularization weight to that value and an array will make it selected the optimal weight from the values in the array. positivity_constraint : bool, Constrain the propagator to be positive. global_constraints : bool, optional If set to False, positivity is enforced on a grid determined by pos_grid and pos_radius. If set to True, positivity is enforced everywhere using the constraints of :footcite:p:`Merlet2013`. Global constraints are currently supported for anisotropic_scaling=True and for radial_order <= 10. pos_grid : int, optional The number of points in the grid that is used in the local positivity constraint. pos_radius : float or string, optional If set to a float, the maximum distance the local positivity constraint constrains to posivity is that value. If set to 'adaptive', the maximum distance is dependent on the estimated tissue diffusivity. If 'infinity', semidefinite programming constraints are used :footcite:p:`DelaHaije2020`. anisotropic_scaling : bool, optional If True, uses the standard anisotropic MAP-MRI basis. If False, uses the isotropic MAP-MRI basis (equal to 3D-SHORE). eigenvalue_threshold : float, optional Sets the minimum of the tensor eigenvalues in order to avoid stability problem. bval_threshold : float, optional Sets the b-value threshold to be used in the scale factor estimation. In order for the estimated non-Gaussianity to have meaning this value should set to a lower value (b<2000 s/mm^2) such that the scale factors are estimated on signal points that reasonably represent the spins at Gaussian diffusion. dti_scale_estimation : bool, optional Whether or not DTI fitting is used to estimate the isotropic scale factor for isotropic MAP-MRI. When set to False the algorithm presets the isotropic tissue diffusivity to static_diffusivity. This vastly increases fitting speed but at the cost of slightly reduced fitting quality. Can still be used in combination with regularization and constraints. static_diffusivity : float, optional the tissue diffusivity that is used when dti_scale_estimation is set to False. The default is that of typical white matter D=0.7e-3 :footcite:p:`Fick2016b`. cvxpy_solver : str, optional cvxpy solver name. Optionally optimize the positivity constraint with a particular cvxpy solver. See https://www.cvxpy.org/ for details. Default: None (cvxpy chooses its own solver) References ---------- .. footbibliography:: Examples -------- In this example, where the data, gradient table and sphere tessellation used for reconstruction are provided, we model the diffusion signal with respect to the SHORE basis and compute the real and analytical ODF. >>> from dipy.data import dsi_voxels, default_sphere >>> from dipy.core.gradients import gradient_table >>> _, gtab_ = dsi_voxels() >>> gtab = gradient_table(gtab_.bvals, bvecs=gtab_.bvecs, ... b0_threshold=gtab_.bvals.min()) >>> from dipy.sims.voxel import sticks_and_ball >>> data, golden_directions = sticks_and_ball(gtab, d=0.0015, S0=1, ... angles=[(0, 0), ... (90, 0)], ... fractions=[50, 50], ... snr=None) >>> from dipy.reconst.mapmri import MapmriModel >>> radial_order = 4 >>> map_model = MapmriModel(gtab, radial_order=radial_order) >>> mapfit = map_model.fit(data) >>> odf = mapfit.odf(default_sphere) """ if np.sum(gtab.b0s_mask) == 0: raise ValueError( "gtab does not have any b0s, check in the " "gradient_table if b0_threshold needs to be " "increased." ) self.gtab = gtab if radial_order < 0 or radial_order % 2: raise ValueError("radial_order must be a positive, even number.") self.radial_order = radial_order self.bval_threshold = bval_threshold self.dti_scale_estimation = dti_scale_estimation if laplacian_regularization: msg = ( "Laplacian Regularization weighting must be 'GCV'," " a positive float or an array of positive floats." ) if isinstance(laplacian_weighting, str): if not laplacian_weighting == "GCV": raise ValueError(msg) elif isinstance(laplacian_weighting, (float, np.ndarray)): if np.sum(laplacian_weighting < 0) > 0: raise ValueError(msg) self.laplacian_weighting = laplacian_weighting self.laplacian_regularization = laplacian_regularization if positivity_constraint: if not have_cvxpy: raise ImportError("CVXPY package needed to enforce constraints.") if cvxpy_solver is not None: if cvxpy_solver not in cvxpy.installed_solvers(): installed_solvers = ", ".join(cvxpy.installed_solvers()) raise ValueError( f"Input `cvxpy_solver` was set to" f" {cvxpy_solver}. One of" f" {installed_solvers} was expected." ) self.cvxpy_solver = cvxpy_solver if global_constraints: if not anisotropic_scaling: raise ValueError( "Global constraints only available for" " anistropic_scaling=True." ) if radial_order > 10: self.sdp_constraints = load_sdp_constraints("hermite", order=10) warn( "Global constraints are currently supported for" " radial_order <= 10.", stacklevel=2, ) else: self.sdp_constraints = load_sdp_constraints( "hermite", order=radial_order ) m = (2 + radial_order) * (4 + radial_order) * (3 + 2 * radial_order) m = m // 24 self.sdp = PositiveDefiniteLeastSquares(m, A=self.sdp_constraints) else: msg = "pos_radius must be 'adaptive' or a positive float." if isinstance(pos_radius, str): if pos_radius != "adaptive": raise ValueError(msg) elif isinstance(pos_radius, (float, int)): if pos_radius <= 0: raise ValueError(msg) self.constraint_grid = create_rspace(pos_grid, pos_radius) if not anisotropic_scaling: self.pos_K_independent = mapmri_isotropic_K_mu_independent( radial_order, self.constraint_grid ) else: raise ValueError(msg) self.pos_grid = pos_grid self.pos_radius = pos_radius self.global_constraints = global_constraints self.positivity_constraint = positivity_constraint self.anisotropic_scaling = anisotropic_scaling if (gtab.big_delta is None) or (gtab.small_delta is None): self.tau = 1 / (4 * np.pi**2) else: self.tau = gtab.big_delta - gtab.small_delta / 3.0 self.eigenvalue_threshold = eigenvalue_threshold self.cutoff = gtab.bvals < self.bval_threshold gtab_cutoff = gradient_table( bvals=self.gtab.bvals[self.cutoff], bvecs=self.gtab.bvecs[self.cutoff] ) self.tenmodel = dti.TensorModel(gtab_cutoff) if self.anisotropic_scaling: self.ind_mat = mapmri_index_matrix(self.radial_order) self.Bm = b_mat(self.ind_mat) self.S_mat, self.T_mat, self.U_mat = mapmri_STU_reg_matrices(radial_order) else: self.ind_mat = mapmri_isotropic_index_matrix(self.radial_order) self.Bm = b_mat_isotropic(self.ind_mat) self.laplacian_matrix = mapmri_isotropic_laplacian_reg_matrix( radial_order, 1.0 ) qvals = np.sqrt(self.gtab.bvals / self.tau) / (2 * np.pi) q = gtab.bvecs * qvals[:, None] if self.dti_scale_estimation: self.M_mu_independent = mapmri_isotropic_M_mu_independent( self.radial_order, q ) else: D = static_diffusivity mumean = np.sqrt(2 * D * self.tau) self.mu = np.array([mumean, mumean, mumean]) self.M = mapmri_isotropic_phi_matrix(radial_order, mumean, q) if ( self.laplacian_regularization and isinstance(laplacian_weighting, float) and not positivity_constraint ): MMt = ( np.dot(self.M.T, self.M) + laplacian_weighting * mumean * self.laplacian_matrix ) self.MMt_inv_Mt = np.dot(np.linalg.pinv(MMt), self.M.T) @multi_voxel_fit def fit(self, data, **kwargs): errorcode = 0 tenfit = self.tenmodel.fit(data[self.cutoff]) evals = tenfit.evals R = tenfit.evecs evals = np.clip(evals, self.eigenvalue_threshold, evals.max()) qvals = np.sqrt(self.gtab.bvals / self.tau) / (2 * np.pi) mu_max = max(np.sqrt(evals * 2 * self.tau)) # used for constraint if self.anisotropic_scaling: mu = np.sqrt(evals * 2 * self.tau) qvecs = np.dot(self.gtab.bvecs, R) q = qvecs * qvals[:, None] M = mapmri_phi_matrix(self.radial_order, mu, q) else: try: # self.MMt_inv_Mt lopt = self.laplacian_weighting coef = np.dot(self.MMt_inv_Mt, data) coef = coef / sum(coef * self.Bm) return MapmriFit(self, coef, self.mu, R, lopt, errorcode=errorcode) except AttributeError: try: M = self.M mu = self.mu except AttributeError: u0 = isotropic_scale_factor(evals * 2 * self.tau) mu = np.array([u0, u0, u0]) M_mu_dependent = mapmri_isotropic_M_mu_dependent( self.radial_order, mu[0], qvals ) M = M_mu_dependent * self.M_mu_independent if self.laplacian_regularization: if self.anisotropic_scaling: laplacian_matrix = mapmri_laplacian_reg_matrix( self.ind_mat, mu, self.S_mat, self.T_mat, self.U_mat ) else: laplacian_matrix = self.laplacian_matrix * mu[0] if ( isinstance(self.laplacian_weighting, str) and self.laplacian_weighting.upper() == "GCV" ): try: lopt = generalized_crossvalidation(data, M, laplacian_matrix) except np.linalg.linalg.LinAlgError: # 1/0. lopt = 0.05 errorcode = 1 elif np.isscalar(self.laplacian_weighting): lopt = self.laplacian_weighting else: lopt = generalized_crossvalidation_array( data, M, laplacian_matrix, weights_array=self.laplacian_weighting ) else: lopt = 0.0 laplacian_matrix = np.ones((self.ind_mat.shape[0], self.ind_mat.shape[0])) if self.positivity_constraint: data_norm = np.asarray(data / data[self.gtab.b0s_mask].mean()) if self.global_constraints: coef = self.sdp.solve(M, data_norm, solver=self.cvxpy_solver) else: c = cvxpy.Variable(M.shape[1]) design_matrix = cvxpy.Constant(M) @ c # workaround for the bug on cvxpy 1.0.15 when lopt = 0 # See https://github.com/cvxgrp/cvxpy/issues/672 if not lopt: objective = cvxpy.Minimize( cvxpy.sum_squares(design_matrix - data_norm) ) else: objective = cvxpy.Minimize( cvxpy.sum_squares(design_matrix - data_norm) + lopt * cvxpy.quad_form(c, laplacian_matrix) ) if self.pos_radius == "adaptive": # custom constraint grid based on scale factor [Avram2015] constraint_grid = create_rspace(self.pos_grid, np.sqrt(5) * mu_max) else: constraint_grid = self.constraint_grid if self.anisotropic_scaling: K = mapmri_psi_matrix(self.radial_order, mu, constraint_grid) else: if self.pos_radius == "adaptive": # grid changes per voxel. Recompute entire K matrix. K = mapmri_isotropic_psi_matrix( self.radial_order, mu[0], constraint_grid ) else: # grid is static. Only compute mu-dependent part of K. K_dependent = mapmri_isotropic_K_mu_dependent( self.radial_order, mu[0], constraint_grid ) K = K_dependent * self.pos_K_independent M0 = M[self.gtab.b0s_mask, :] constraints = [(M0[0] @ c) == 1, (K @ c) >= -0.1] prob = cvxpy.Problem(objective, constraints) try: prob.solve(solver=self.cvxpy_solver) coef = np.asarray(c.value).squeeze() except Exception: errorcode = 2 warn("Optimization did not find a solution", stacklevel=2) try: coef = np.dot(np.linalg.pinv(M), data) # least squares except np.linalg.linalg.LinAlgError: errorcode = 3 coef = np.zeros(M.shape[1]) return MapmriFit(self, coef, mu, R, lopt, errorcode=errorcode) else: try: pseudoInv = np.dot( np.linalg.inv(np.dot(M.T, M) + lopt * laplacian_matrix), M.T ) coef = np.dot(pseudoInv, data) except np.linalg.linalg.LinAlgError: errorcode = 1 coef = np.zeros(M.shape[1]) return MapmriFit(self, coef, mu, R, lopt, errorcode=errorcode) coef = coef / sum(coef * self.Bm) return MapmriFit(self, coef, mu, R, lopt, errorcode=errorcode)
[docs] class MapmriFit(ReconstFit): @warning_for_keywords() def __init__(self, model, mapmri_coef, mu, R, lopt, *, errorcode=0): """Calculates diffusion properties for a single voxel Parameters ---------- model : object, AnalyticalModel mapmri_coef : 1d ndarray, mapmri coefficients mu : array, shape (3,) scale parameters vector for x, y and z R : array, shape (3,3) rotation matrix lopt : float, regularization weight used for laplacian regularization errorcode : int provides information on whether errors occurred in the fitting of each voxel. 0 means no problem, 1 means a LinAlgError occurred when trying to invert the design matrix. 2 means the positivity constraint was unable to solve the problem. 3 means that after positivity constraint failed, also matrix inversion failed. """ self.model = model self._mapmri_coef = mapmri_coef self.gtab = model.gtab self.radial_order = model.radial_order self.mu = mu self.R = R self.lopt = lopt self.errorcode = errorcode @property def mapmri_mu(self): """The MAPMRI scale factors""" return self.mu @property def mapmri_R(self): """The MAPMRI rotation matrix""" return self.R @property def mapmri_coeff(self): """The MAPMRI coefficients""" return self._mapmri_coef
[docs] @warning_for_keywords() def odf(self, sphere, *, s=2): """Calculates the analytical Orientation Distribution Function (ODF) from the signal. See :footcite:p:`Ozarslan2013` Eq. (32). Parameters ---------- sphere : Sphere A Sphere instance with vertices, edges and faces attributes. s : unsigned int radial moment of the ODF References ---------- .. footbibliography:: """ if self.model.anisotropic_scaling: v_ = sphere.vertices v = np.dot(v_, self.R) I_s = mapmri_odf_matrix(self.radial_order, self.mu, s, v) odf = np.dot(I_s, self._mapmri_coef) else: _I = self.model.cache_get("ODF_matrix", key=(sphere, s)) if _I is None: _I = mapmri_isotropic_odf_matrix( self.radial_order, 1, s, sphere.vertices ) self.model.cache_set("ODF_matrix", (sphere, s), _I) odf = self.mu[0] ** s * np.dot(_I, self._mapmri_coef) return odf
[docs] @warning_for_keywords() def odf_sh(self, *, s=2): """Calculates the real analytical odf for a given discrete sphere. Computes the design matrix of the ODF for the given sphere vertices and radial moment :footcite:p:`Ozarslan2013` eq. (32). The radial moment s acts as a sharpening method. The analytical equation for the spherical ODF basis is given in :footcite:p:`Fick2016b` eq. (C8). References ---------- .. footbibliography:: """ if self.model.anisotropic_scaling: raise ValueError( "odf in spherical harmonics not yet implemented " "for anisotropic implementation" ) _I = self.model.cache_get("ODF_sh_matrix", key=(self.radial_order, s)) if _I is None: _I = mapmri_isotropic_odf_sh_matrix(self.radial_order, 1, s) self.model.cache_set("ODF_sh_matrix", (self.radial_order, s), _I) odf = self.mu[0] ** s * np.dot(_I, self._mapmri_coef) return odf
[docs] def rtpp(self): """Calculates the analytical return to the plane probability (RTPP). RTPP is defined in :footcite:p:`Ozarslan2013` eq. (42). The analytical formula for the isotropic MAP-MRI basis was derived in :footcite:p:`Fick2016b` eq. (C11). References ---------- .. footbibliography:: """ Bm = self.model.Bm ind_mat = self.model.ind_mat if self.model.anisotropic_scaling: sel = Bm > 0.0 # select only relevant coefficients const = 1 / (np.sqrt(2 * np.pi) * self.mu[0]) ind_sum = (-1.0) ** (ind_mat[sel, 0] / 2.0) rtpp_vec = const * Bm[sel] * ind_sum * self._mapmri_coef[sel] rtpp = rtpp_vec.sum() return rtpp else: rtpp_vec = np.zeros((ind_mat.shape[0])) count = 0 for n in range(0, self.model.radial_order + 1, 2): for j in range(1, 2 + n // 2): ell = n + 2 - 2 * j const = (-1 / 2.0) ** (ell / 2) / np.sqrt(np.pi) matsum = 0 for k in range(0, j): matsum += ( (-1) ** k * binomialfloat(j + ell - 0.5, j - k - 1) * gamma(ell / 2 + k + 1 / 2.0) / (sfactorial(k) * 0.5 ** (ell / 2 + 1 / 2.0 + k)) ) for _ in range(-ell, ell + 1): rtpp_vec[count] = const * matsum count += 1 direction = np.array(self.R[:, 0], ndmin=2) r, theta, phi = cart2sphere( direction[:, 0], direction[:, 1], direction[:, 2] ) rtpp = ( self._mapmri_coef * (1 / self.mu[0]) * rtpp_vec * real_sh_descoteaux_from_index( ind_mat[:, 2], ind_mat[:, 1], theta, phi ) ) return rtpp.sum()
[docs] def rtap(self): """Calculates the analytical return to the axis probability (RTAP). RTAP is defined in :footcite:p:`Ozarslan2013` eq. (40, 44a). The analytical formula for the isotropic MAP-MRI basis was derived in :footcite:p:`Fick2016b` eq. (C11). References ---------- .. footbibliography:: """ Bm = self.model.Bm ind_mat = self.model.ind_mat if self.model.anisotropic_scaling: sel = Bm > 0.0 # select only relevant coefficients const = 1 / (2 * np.pi * np.prod(self.mu[1:])) ind_sum = (-1.0) ** (np.sum(ind_mat[sel, 1:], axis=1) / 2.0) rtap_vec = const * Bm[sel] * ind_sum * self._mapmri_coef[sel] rtap = np.sum(rtap_vec) else: rtap_vec = np.zeros((ind_mat.shape[0])) count = 0 for n in range(0, self.model.radial_order + 1, 2): for j in range(1, 2 + n // 2): ell = n + 2 - 2 * j kappa = ((-1) ** (j - 1) * 2 ** (-(ell + 3) / 2.0)) / np.pi matsum = 0 for k in range(0, j): matsum += ( (-1) ** k * binomialfloat(j + ell - 0.5, j - k - 1) * gamma((ell + 1) / 2.0 + k) ) / (sfactorial(k) * 0.5 ** ((ell + 1) / 2.0 + k)) for _ in range(-ell, ell + 1): rtap_vec[count] = kappa * matsum count += 1 rtap_vec *= 2 direction = np.array(self.R[:, 0], ndmin=2) r, theta, phi = cart2sphere( direction[:, 0], direction[:, 1], direction[:, 2] ) rtap_vec = ( self._mapmri_coef * (1 / self.mu[0] ** 2) * rtap_vec * real_sh_descoteaux_from_index( ind_mat[:, 2], ind_mat[:, 1], theta, phi ) ) rtap = rtap_vec.sum() return rtap
[docs] def rtop(self): """Calculates the analytical return to the origin probability (RTOP). RTOP is defined in :footcite:p:`Ozarslan2013` eq. (36, 43). The analytical formula for the isotropic MAP-MRI basis was derived in :footcite:p:`Fick2016b` eq. (C11). References ---------- .. footbibliography:: """ Bm = self.model.Bm if self.model.anisotropic_scaling: const = 1 / (np.sqrt(8 * np.pi**3) * np.prod(self.mu)) ind_sum = (-1.0) ** (np.sum(self.model.ind_mat, axis=1) / 2) rtop_vec = const * ind_sum * Bm * self._mapmri_coef rtop = rtop_vec.sum() else: const = 1 / (2 * np.sqrt(2.0) * np.pi ** (3 / 2.0)) rtop_vec = const * (-1.0) ** (self.model.ind_mat[:, 0] - 1) * Bm rtop = (1 / self.mu[0] ** 3) * rtop_vec * self._mapmri_coef rtop = rtop.sum() return rtop
[docs] def msd(self): """Calculates the analytical Mean Squared Displacement (MSD). It is defined as the Laplacian of the origin of the estimated signal :footcite:p:`Cheng2012`. The analytical formula for the MAP-MRI basis was derived in :footcite:p:`Fick2016b` eq. (C13, D1). References ---------- .. footbibliography:: """ mu = self.mu ind_mat = self.model.ind_mat Bm = self.model.Bm sel = self.model.Bm > 0.0 # select only relevant coefficients mapmri_coef = self._mapmri_coef[sel] if self.model.anisotropic_scaling: ind_sum = np.sum(ind_mat[sel], axis=1) nx, ny, nz = ind_mat[sel].T numerator = ( (-1) ** (0.5 * (-ind_sum)) * np.pi ** (3 / 2.0) * ( (1 + 2 * nx) * mu[0] ** 2 + (1 + 2 * ny) * mu[1] ** 2 + (1 + 2 * nz) * mu[2] ** 2 ) ) denominator = ( np.sqrt( 2.0 ** (-ind_sum) * sfactorial(nx) * sfactorial(ny) * sfactorial(nz) ) * gamma(0.5 - 0.5 * nx) * gamma(0.5 - 0.5 * ny) * gamma(0.5 - 0.5 * nz) ) msd_vec = self._mapmri_coef[sel] * (numerator / denominator) msd = msd_vec.sum() else: msd_vec = (4 * ind_mat[sel, 0] - 1) * Bm[sel] msd = self.mu[0] ** 2 * msd_vec * mapmri_coef msd = msd.sum() return msd
[docs] def qiv(self): """Calculates the analytical Q-space Inverse Variance (QIV). It is defined as the inverse of the Laplacian of the origin of the estimated propagator :footcite:p:`Hosseinbor2013` eq. (22). The analytical formula for the MAP-MRI basis was derived in :footcite:p:`Fick2016b` eq. (C14, D2). References ---------- .. footbibliography:: """ ux, uy, uz = self.mu ind_mat = self.model.ind_mat if self.model.anisotropic_scaling: sel = self.model.Bm > 0 # select only relevant coefficients nx, ny, nz = ind_mat[sel].T numerator = ( 8 * np.pi**2 * (ux * uy * uz) ** 3 * np.sqrt(sfactorial(nx) * sfactorial(ny) * sfactorial(nz)) * gamma(0.5 - 0.5 * nx) * gamma(0.5 - 0.5 * ny) * gamma(0.5 - 0.5 * nz) ) denominator = np.sqrt(2.0 ** (-1 + nx + ny + nz)) * ( (1 + 2 * nx) * uy**2 * uz**2 + ux**2 * ((1 + 2 * nz) * uy**2 + (1 + 2 * ny) * uz**2) ) qiv_vec = self._mapmri_coef[sel] * (numerator / denominator) qiv = qiv_vec.sum() else: sel = self.model.Bm > 0.0 # select only relevant coefficients j = ind_mat[sel, 0] qiv_vec = (8 * (-1.0) ** (1 - j) * np.sqrt(2) * np.pi ** (7 / 2.0)) / ( (4.0 * j - 1) * self.model.Bm[sel] ) qiv = ux**5 * qiv_vec * self._mapmri_coef[sel] qiv = qiv.sum() return qiv
[docs] def ng(self): r"""Calculates the analytical non-Gaussiannity (NG). For the NG to be meaningful the mapmri scale factors must be estimated only on data representing Gaussian diffusion of spins, i.e., bvals smaller than about 2000 s/mm^2 :footcite:p:`Avram2015`. See :footcite:p:`Ozarslan2013` for a definition of the metric. References ---------- .. footbibliography:: """ if self.model.bval_threshold > 2000.0: warn( "model bval_threshold must be lower than 2000 for the " "non_Gaussianity to be physically meaningful [2].", stacklevel=2, ) if not self.model.anisotropic_scaling: raise ValueError( "Parallel non-Gaussianity is not defined using isotropic scaling." ) coef = self._mapmri_coef return np.sqrt(1 - coef[0] ** 2 / np.sum(coef**2))
[docs] def ng_parallel(self): r"""Calculates the analytical parallel non-Gaussiannity (NG). For the NG to be meaningful the mapmri scale factors must be estimated only on data representing Gaussian diffusion of spins, i.e., bvals smaller than about 2000 s/mm^2 :footcite:p:`Avram2015`. See :footcite:p:`Ozarslan2013` for a definition of the metric. References ---------- .. footbibliography:: """ if self.model.bval_threshold > 2000.0: warn( "Model bval_threshold must be lower than 2000 for the " "non_Gaussianity to be physically meaningful [2].", stacklevel=2, ) if not self.model.anisotropic_scaling: raise ValueError( "Parallel non-Gaussianity is not defined using isotropic scaling." ) ind_mat = self.model.ind_mat coef = self._mapmri_coef a_par = np.zeros_like(coef) a0 = np.zeros_like(coef) for i in range(coef.shape[0]): n1, n2, n3 = ind_mat[i] if (n2 % 2 + n3 % 2) == 0: a_par[i] = ( coef[i] * (-1) ** ((n2 + n3) / 2) * np.sqrt(sfactorial(n2) * sfactorial(n3)) / (factorial2(n2) * factorial2(n3)) ) if n1 == 0: a0[i] = a_par[i] return np.sqrt(1 - np.sum(a0**2) / np.sum(a_par**2))
[docs] def ng_perpendicular(self): r"""Calculates the analytical perpendicular non-Gaussiannity (NG) For the NG to be meaningful the mapmri scale factors must be estimated only on data representing Gaussian diffusion of spins, i.e., bvals smaller than about 2000 s/mm^2 :footcite:p:`Avram2015`. See :footcite:p:`Ozarslan2013` for a definition of the metric. References ---------- .. footbibliography:: """ if self.model.bval_threshold > 2000.0: warn( "model bval_threshold must be lower than 2000 for the " "non_Gaussianity to be physically meaningful [2].", stacklevel=2, ) if not self.model.anisotropic_scaling: raise ValueError( "Parallel non-Gaussianity is not defined using isotropic scaling." ) ind_mat = self.model.ind_mat coef = self._mapmri_coef a_perp = np.zeros_like(coef) a00 = np.zeros_like(coef) for i in range(coef.shape[0]): n1, n2, n3 = ind_mat[i] if n1 % 2 == 0: if n2 % 2 == 0 and n3 % 2 == 0: a_perp[i] = ( coef[i] * (-1) ** (n1 / 2) * np.sqrt(sfactorial(n1)) / factorial2(n1) ) if n2 == 0 and n3 == 0: a00[i] = a_perp[i] return np.sqrt(1 - np.sum(a00**2) / np.sum(a_perp**2))
[docs] def norm_of_laplacian_signal(self): """Calculates the norm of the laplacian of the fitted signal. This information could be useful to assess if the extrapolation of the fitted signal contains spurious oscillations. A high laplacian may indicate that these are present, and any q-space indices that use integrals of the signal may be corrupted (e.g. RTOP, RTAP, RTPP, QIV). See :footcite:p:`Fick2016b` for a definition of the metric. References ---------- .. footbibliography:: """ if self.model.anisotropic_scaling: laplacian_matrix = mapmri_laplacian_reg_matrix( self.model.ind_mat, self.mu, self.model.S_mat, self.model.T_mat, self.model.U_mat, ) else: laplacian_matrix = self.mu[0] * self.model.laplacian_matrix norm_of_laplacian = np.linalg.multi_dot( [self._mapmri_coef, laplacian_matrix, self._mapmri_coef] ) return norm_of_laplacian
[docs] @warning_for_keywords() def fitted_signal(self, *, gtab=None): """Recovers the fitted signal for the given gradient table. If no gradient table is given it recovers the signal for the gtab of the model object. """ if gtab is None: E = self.predict(self.model.gtab, S0=1.0) else: E = self.predict(gtab, S0=1.0) return E
[docs] @warning_for_keywords() def predict(self, qvals_or_gtab, *, S0=100.0): """Recovers the reconstructed signal for any qvalue array or gradient table. """ if isinstance(qvals_or_gtab, np.ndarray): q = qvals_or_gtab # qvals = np.linalg.norm(q, axis=1) else: gtab = qvals_or_gtab qvals = np.sqrt(gtab.bvals / self.model.tau) / (2 * np.pi) q = qvals[:, None] * gtab.bvecs if self.model.anisotropic_scaling: q_rot = np.dot(q, self.R) M = mapmri_phi_matrix(self.radial_order, self.mu, q_rot) else: M = mapmri_isotropic_phi_matrix(self.radial_order, self.mu[0], q) E = S0 * np.dot(M, self._mapmri_coef) return E
[docs] def pdf(self, r_points): """Diffusion propagator on a given set of real points. if the array r_points is non writeable, then intermediate results are cached for faster recalculation """ if self.model.anisotropic_scaling: r_point_rotated = np.dot(r_points, self.R) K = mapmri_psi_matrix(self.radial_order, self.mu, r_point_rotated) EAP = np.dot(K, self._mapmri_coef) else: if not r_points.flags.writeable: K_independent = self.model.cache_get( "mapmri_matrix_pdf_independent", key=hash(r_points.data) ) if K_independent is None: K_independent = mapmri_isotropic_K_mu_independent( self.radial_order, r_points ) self.model.cache_set( "mapmri_matrix_pdf_independent", hash(r_points.data), K_independent, ) K_dependent = mapmri_isotropic_K_mu_dependent( self.radial_order, self.mu[0], r_points ) K = K_dependent * K_independent else: K = mapmri_isotropic_psi_matrix(self.radial_order, self.mu[0], r_points) EAP = np.dot(K, self._mapmri_coef) return EAP
[docs] def isotropic_scale_factor(mu_squared): """Estimated isotropic scaling factor. See :footcite:p:`Ozarslan2013` Eq. (49). Parameters ---------- mu_squared : array, shape (N,3) squared scale factors of mapmri basis in x, y, z Returns ------- u0 : float closest isotropic scale factor for the isotropic basis References ---------- .. footbibliography:: """ X, Y, Z = mu_squared coef_array = np.array([-3, -(X + Y + Z), (X * Y + X * Z + Y * Z), 3 * X * Y * Z]) # take the real, positive root of the problem. u0 = np.sqrt(np.real(np.roots(coef_array).max())) return u0
[docs] def mapmri_index_matrix(radial_order): """Calculates the indices for the MAPMRI basis in x, y and z. See :footcite:p:`Ozarslan2013` for a definition of MAPMRI. Parameters ---------- radial_order : unsigned int radial order of MAPMRI basis Returns ------- index_matrix : array, shape (N,3) ordering of the basis in x, y, z References ---------- .. footbibliography:: """ index_matrix = [] for n in range(0, radial_order + 1, 2): for i in range(0, n + 1): for j in range(0, n - i + 1): index_matrix.append([n - i - j, j, i]) return np.array(index_matrix)
[docs] def b_mat(index_matrix): """Calculates the B coefficients from See :footcite:p:`Ozarslan2013` Eq. (27). Parameters ---------- index_matrix : array, shape (N,3) ordering of the basis in x, y, z Returns ------- B : array, shape (N,) B coefficients for the basis References ---------- .. footbibliography:: """ B = np.zeros(index_matrix.shape[0]) for i in range(index_matrix.shape[0]): n1, n2, n3 = index_matrix[i] K = int(not (n1 % 2) and not (n2 % 2) and not (n3 % 2)) B[i] = ( K * np.sqrt(sfactorial(n1) * sfactorial(n2) * sfactorial(n3)) / (factorial2(n1) * factorial2(n2) * factorial2(n3)) ) return B
[docs] def b_mat_isotropic(index_matrix): """Calculates the isotropic B coefficients. See :footcite:p:`Ozarslan2013` Fig 8. Parameters ---------- index_matrix : array, shape (N,3) ordering of the isotropic basis in j, l, m Returns ------- B : array, shape (N,) B coefficients for the isotropic basis References ---------- .. footbibliography:: """ B = np.zeros((index_matrix.shape[0])) for i in range(index_matrix.shape[0]): if index_matrix[i, 1] == 0: B[i] = genlaguerre(index_matrix[i, 0] - 1, 0.5)(0) return B
[docs] def mapmri_phi_1d(n, q, mu): """One dimensional MAPMRI basis function. See :footcite:p:`Ozarslan2013` Eq. (4). Parameters ---------- n : unsigned int order of the basis q : array, shape (N,) points in the q-space in which evaluate the basis mu : float scale factor of the basis References ---------- .. footbibliography:: """ qn = 2 * np.pi * mu * q H = hermite(n)(qn) i = complex(0, 1) f = mfactorial(n) k = i ** (-n) / np.sqrt(2**n * f) phi = k * np.exp(-(qn**2) / 2) * H return phi
[docs] def mapmri_phi_matrix(radial_order, mu, q_gradients): """Compute the MAPMRI phi matrix for the signal. See :footcite:p:`Ozarslan2013` eq. (23). Parameters ---------- radial_order : unsigned int, an even integer that represent the order of the basis mu : array, shape (3,) scale factors of the basis for x, y, z q_gradients : array, shape (N,3) points in the q-space in which evaluate the basis References ---------- .. footbibliography:: """ ind_mat = mapmri_index_matrix(radial_order) n_elem = ind_mat.shape[0] n_qgrad = q_gradients.shape[0] qx, qy, qz = q_gradients.T mux, muy, muz = mu Mx_storage = np.array(np.zeros((n_qgrad, radial_order + 1)), dtype=complex) My_storage = np.array(np.zeros((n_qgrad, radial_order + 1)), dtype=complex) Mz_storage = np.array(np.zeros((n_qgrad, radial_order + 1)), dtype=complex) M = np.zeros((n_qgrad, n_elem)) for n in range(radial_order + 1): Mx_storage[:, n] = mapmri_phi_1d(n, qx, mux) My_storage[:, n] = mapmri_phi_1d(n, qy, muy) Mz_storage[:, n] = mapmri_phi_1d(n, qz, muz) counter = 0 for nx, ny, nz in ind_mat: M[:, counter] = np.real( Mx_storage[:, nx] * My_storage[:, ny] * Mz_storage[:, nz] ) counter += 1 return M
[docs] def mapmri_psi_1d(n, x, mu): """One dimensional MAPMRI propagator basis function. See :footcite:p:`Ozarslan2013` Eq. (10). Parameters ---------- n : unsigned int order of the basis x : array, shape (N,) points in the r-space in which evaluate the basis mu : float scale factor of the basis References ---------- .. footbibliography:: """ H = hermite(n)(x / mu) f = mfactorial(n) k = 1 / (np.sqrt(2 ** (n + 1) * np.pi * f) * mu) psi = k * np.exp(-(x**2) / (2 * mu**2)) * H return psi
[docs] def mapmri_psi_matrix(radial_order, mu, rgrad): """Compute the MAPMRI psi matrix for the propagator. See :footcite:p:`Ozarslan2013` eq. (22). Parameters ---------- radial_order : unsigned int, an even integer that represent the order of the basis mu : array, shape (3,) scale factors of the basis for x, y, z rgrad : array, shape (N,3) points in the r-space in which evaluate the EAP References ---------- .. footbibliography:: """ ind_mat = mapmri_index_matrix(radial_order) n_elem = ind_mat.shape[0] n_qgrad = rgrad.shape[0] rx, ry, rz = rgrad.T mux, muy, muz = mu Kx_storage = np.zeros((n_qgrad, radial_order + 1)) Ky_storage = np.zeros((n_qgrad, radial_order + 1)) Kz_storage = np.zeros((n_qgrad, radial_order + 1)) K = np.zeros((n_qgrad, n_elem)) for n in range(radial_order + 1): Kx_storage[:, n] = mapmri_psi_1d(n, rx, mux) Ky_storage[:, n] = mapmri_psi_1d(n, ry, muy) Kz_storage[:, n] = mapmri_psi_1d(n, rz, muz) counter = 0 for nx, ny, nz in ind_mat: K[:, counter] = Kx_storage[:, nx] * Ky_storage[:, ny] * Kz_storage[:, nz] counter += 1 return K
[docs] def mapmri_odf_matrix(radial_order, mu, s, vertices): """Compute the MAPMRI ODF matrix. See :footcite:p:`Ozarslan2013` Eq. (33). Parameters ---------- radial_order : unsigned int, an even integer that represent the order of the basis mu : array, shape (3,) scale factors of the basis for x, y, z s : unsigned int radial moment of the ODF vertices : array, shape (N,3) points of the sphere shell in the r-space in which evaluate the ODF References ---------- .. footbibliography:: """ ind_mat = mapmri_index_matrix(radial_order) n_vert = vertices.shape[0] n_elem = ind_mat.shape[0] odf_mat = np.zeros((n_vert, n_elem)) mux, muy, muz = mu # Eq, 35a rho = 1.0 / np.sqrt( (vertices[:, 0] / mux) ** 2 + (vertices[:, 1] / muy) ** 2 + (vertices[:, 2] / muz) ** 2 ) # Eq, 35b alpha = 2 * rho * (vertices[:, 0] / mux) # Eq, 35c beta = 2 * rho * (vertices[:, 1] / muy) # Eq, 35d gamma = 2 * rho * (vertices[:, 2] / muz) const = rho ** (3 + s) / np.sqrt( 2 ** (2 - s) * np.pi**3 * (mux**2 * muy**2 * muz**2) ) for j in range(n_elem): n1, n2, n3 = ind_mat[j] f = np.sqrt(sfactorial(n1) * sfactorial(n2) * sfactorial(n3)) odf_mat[:, j] = const * f * _odf_cfunc(n1, n2, n3, alpha, beta, gamma, s) return odf_mat
def _odf_cfunc(n1, n2, n3, a, b, g, s): """Compute the MAPMRI ODF function. See :footcite:p:`Ozarslan2013` Eq. (34). References ---------- .. footbibliography:: """ f = mfactorial f2 = factorial2 sumc = 0 for i in range(0, n1 + 1, 2): for j in range(0, n2 + 1, 2): for k in range(0, n3 + 1, 2): nn = n1 + n2 + n3 - i - j - k gam = (-1) ** ((i + j + k) / 2.0) * gamma((3 + s + nn) / 2.0) num1 = a ** (n1 - i) num2 = b ** (n2 - j) num3 = g ** (n3 - k) num = gam * num1 * num2 * num3 denom = f(n1 - i) * f(n2 - j) * f(n3 - k) * f2(i) * f2(j) * f2(k) sumc += num / denom return sumc
[docs] def mapmri_isotropic_phi_matrix(radial_order, mu, q): """Three dimensional isotropic MAPMRI signal basis function See :footcite:p:`Ozarslan2013` Eq. (61). Parameters ---------- radial_order : unsigned int, radial order of the mapmri basis. mu : float, positive isotropic scale factor of the basis q : array, shape (N,3) points in the q-space in which evaluate the basis References ---------- .. footbibliography:: """ qval, theta, phi = cart2sphere(q[:, 0], q[:, 1], q[:, 2]) theta[np.isnan(theta)] = 0 ind_mat = mapmri_isotropic_index_matrix(radial_order) n_elem = ind_mat.shape[0] n_qgrad = q.shape[0] M = np.zeros((n_qgrad, n_elem)) counter = 0 for n in range(0, radial_order + 1, 2): for j in range(1, 2 + n // 2): l_value = n + 2 - 2 * j const = mapmri_isotropic_radial_signal_basis(j, l_value, mu, qval) for m_value in range(-l_value, l_value + 1): M[:, counter] = const * real_sh_descoteaux_from_index( m_value, l_value, theta, phi ) counter += 1 return M
[docs] def mapmri_isotropic_radial_signal_basis(j, l_value, mu, qval): """Radial part of the isotropic 1D-SHORE signal basis. See :footcite:p:`Ozarslan2013` eq. (61). Parameters ---------- j : unsigned int, a positive integer related to the radial order l_value : unsigned int, the spherical harmonic order (l) mu : float, isotropic scale factor of the basis qval : float, points in the q-space in which evaluate the basis References ---------- .. footbibliography:: """ pi2_mu2_q2 = 2 * np.pi**2 * mu**2 * qval**2 const = ( (-1) ** (l_value / 2) * np.sqrt(4.0 * np.pi) * pi2_mu2_q2 ** (l_value / 2) * np.exp(-pi2_mu2_q2) * genlaguerre(j - 1, l_value + 0.5)(2 * pi2_mu2_q2) ) return const
[docs] def mapmri_isotropic_M_mu_independent(radial_order, q): r"""Computed the mu independent part of the signal design matrix.""" ind_mat = mapmri_isotropic_index_matrix(radial_order) qval, theta, phi = cart2sphere(q[:, 0], q[:, 1], q[:, 2]) theta[np.isnan(theta)] = 0 n_elem = ind_mat.shape[0] n_rgrad = theta.shape[0] Q_mu_independent = np.zeros((n_rgrad, n_elem)) counter = 0 for n in range(0, radial_order + 1, 2): for j in range(1, 2 + n // 2): l_value = n + 2 - 2 * j const = ( np.sqrt(4 * np.pi) * (-1) ** (-l_value / 2) * (2 * np.pi**2 * qval**2) ** (l_value / 2) ) for m_value in range(-1 * (n + 2 - 2 * j), (n + 3 - 2 * j)): Q_mu_independent[:, counter] = const * real_sh_descoteaux_from_index( m_value, l_value, theta, phi ) counter += 1 return Q_mu_independent
[docs] def mapmri_isotropic_M_mu_dependent(radial_order, mu, qval): """Computed the mu dependent part of the signal design matrix.""" ind_mat = mapmri_isotropic_index_matrix(radial_order) n_elem = ind_mat.shape[0] n_qgrad = qval.shape[0] Q_u0_dependent = np.zeros((n_qgrad, n_elem)) pi2q2mu2 = 2 * np.pi**2 * mu**2 * qval**2 counter = 0 for n in range(0, radial_order + 1, 2): for j in range(1, 2 + n // 2): l_value = n + 2 - 2 * j const = ( mu**l_value * np.exp(-pi2q2mu2) * genlaguerre(j - 1, l_value + 0.5)(2 * pi2q2mu2) ) for _ in range(-l_value, l_value + 1): Q_u0_dependent[:, counter] = const counter += 1 return Q_u0_dependent
[docs] def mapmri_isotropic_psi_matrix(radial_order, mu, rgrad): """Three dimensional isotropic MAPMRI propagator basis function. See :footcite:p:`Ozarslan2013` Eq. (61). Parameters ---------- radial_order : unsigned int, radial order of the mapmri basis. mu : float, positive isotropic scale factor of the basis rgrad : array, shape (N,3) points in the r-space in which evaluate the basis References ---------- .. footbibliography:: """ r, theta, phi = cart2sphere(rgrad[:, 0], rgrad[:, 1], rgrad[:, 2]) theta[np.isnan(theta)] = 0 ind_mat = mapmri_isotropic_index_matrix(radial_order) n_elem = ind_mat.shape[0] n_rgrad = rgrad.shape[0] K = np.zeros((n_rgrad, n_elem)) counter = 0 for n in range(0, radial_order + 1, 2): for j in range(1, 2 + n // 2): l_value = n + 2 - 2 * j const = mapmri_isotropic_radial_pdf_basis(j, l_value, mu, r) for m_value in range(-l_value, l_value + 1): K[:, counter] = const * real_sh_descoteaux_from_index( m_value, l_value, theta, phi ) counter += 1 return K
[docs] def mapmri_isotropic_radial_pdf_basis(j, l_value, mu, r): """Radial part of the isotropic 1D-SHORE propagator basis. See :footcite:p:`Ozarslan2013` eq. (61). Parameters ---------- j : unsigned int, a positive integer related to the radial order l_value : unsigned int, the spherical harmonic order (l) mu : float, isotropic scale factor of the basis r : float, points in the r-space in which evaluate the basis References ---------- .. footbibliography:: """ r2u2 = r**2 / (2 * mu**2) const = ( (-1) ** (j - 1) / (np.sqrt(2) * np.pi * mu**3) * r2u2 ** (l_value / 2) * np.exp(-r2u2) * genlaguerre(j - 1, l_value + 0.5)(2 * r2u2) ) return const
[docs] def mapmri_isotropic_K_mu_independent(radial_order, rgrad): """Computes mu independent part of K. Same trick as with M.""" r, theta, phi = cart2sphere(rgrad[:, 0], rgrad[:, 1], rgrad[:, 2]) theta[np.isnan(theta)] = 0 ind_mat = mapmri_isotropic_index_matrix(radial_order) n_elem = ind_mat.shape[0] n_rgrad = rgrad.shape[0] K = np.zeros((n_rgrad, n_elem)) counter = 0 for n in range(0, radial_order + 1, 2): for j in range(1, 2 + n // 2): ell = n + 2 - 2 * j const = ( (-1) ** (j - 1) * (np.sqrt(2) * np.pi) ** (-1) * (r**2 / 2) ** (ell / 2) ) for m in range(-ell, ell + 1): K[:, counter] = const * real_sh_descoteaux_from_index( m, ell, theta, phi ) counter += 1 return K
[docs] def mapmri_isotropic_K_mu_dependent(radial_order, mu, rgrad): """Computes mu dependent part of M. Same trick as with M.""" r, theta, phi = cart2sphere(rgrad[:, 0], rgrad[:, 1], rgrad[:, 2]) theta[np.isnan(theta)] = 0 ind_mat = mapmri_isotropic_index_matrix(radial_order) n_elem = ind_mat.shape[0] n_rgrad = rgrad.shape[0] K = np.zeros((n_rgrad, n_elem)) r2mu2 = r**2 / (2 * mu**2) counter = 0 for n in range(0, radial_order + 1, 2): for j in range(1, 2 + n // 2): ell = n + 2 - 2 * j const = ( (mu**3) ** (-1) * mu ** (-ell) * np.exp(-r2mu2) * genlaguerre(j - 1, ell + 0.5)(2 * r2mu2) ) for _ in range(-ell, ell + 1): K[:, counter] = const counter += 1 return K
[docs] def binomialfloat(n, k): """Custom Binomial function""" return sfactorial(n) / (sfactorial(n - k) * sfactorial(k))
[docs] def mapmri_isotropic_odf_matrix(radial_order, mu, s, vertices): """Compute the isotropic MAPMRI ODF matrix. The computation follows :footcite:p:`Ozarslan2013` Eq. 32, but it is done for the isotropic propagator in footcite:p:`Ozarslan2013` eq. (60). Analytical derivation in :footcite:p:`Fick2016b` eq. (C8). Parameters ---------- radial_order : unsigned int, an even integer that represent the order of the basis mu : float, isotropic scale factor of the isotropic MAP-MRI basis s : unsigned int radial moment of the ODF vertices : array, shape (N,3) points of the sphere shell in the r-space in which evaluate the ODF Returns ------- odf_mat : Matrix, shape (N_vertices, N_mapmri_coef) ODF design matrix to discrete sphere function References ---------- .. footbibliography:: """ r, theta, phi = cart2sphere(vertices[:, 0], vertices[:, 1], vertices[:, 2]) theta[np.isnan(theta)] = 0 ind_mat = mapmri_isotropic_index_matrix(radial_order) n_vert = vertices.shape[0] n_elem = ind_mat.shape[0] odf_mat = np.zeros((n_vert, n_elem)) counter = 0 for n in range(0, radial_order + 1, 2): for j in range(1, 2 + n // 2): ell = n + 2 - 2 * j kappa = ((-1) ** (j - 1) * 2 ** (-(ell + 3) / 2.0) * mu**s) / np.pi matsum = 0 for k in range(0, j): matsum += ( (-1) ** k * binomialfloat(j + ell - 0.5, j - k - 1) * gamma((ell + s + 3) / 2.0 + k) ) / (mfactorial(k) * 0.5 ** ((ell + s + 3) / 2.0 + k)) for m in range(-ell, ell + 1): odf_mat[:, counter] = ( kappa * matsum * real_sh_descoteaux_from_index(m, ell, theta, phi) ) counter += 1 return odf_mat
[docs] def mapmri_isotropic_odf_sh_matrix(radial_order, mu, s): """Compute the isotropic MAPMRI ODF matrix. The computation follows :footcite:p:`Ozarslan2013` Eq. 32, but it is done for the isotropic propagator in :footcite:p:`Ozarslan2013` eq. (60). Here we do not compute the sphere function but the spherical harmonics by only integrating the radial part of the propagator. We use the same derivation of the ODF in the isotropic implementation as in :footcite:p:`Fick2016b` eq. (C8). Parameters ---------- radial_order : unsigned int, an even integer that represent the order of the basis mu : float, isotropic scale factor of the isotropic MAP-MRI basis s : unsigned int radial moment of the ODF Returns ------- odf_sh_mat : Matrix, shape (N_sh_coef, N_mapmri_coef) ODF design matrix to spherical harmonics References ---------- .. footbibliography:: """ sh_mat = sph_harm_ind_list(radial_order) ind_mat = mapmri_isotropic_index_matrix(radial_order) n_elem_shore = ind_mat.shape[0] n_elem_sh = sh_mat[0].shape[0] odf_sh_mat = np.zeros((n_elem_sh, n_elem_shore)) counter = 0 for n in range(0, radial_order + 1, 2): for j in range(1, 2 + n // 2): ell = n + 2 - 2 * j kappa = ((-1) ** (j - 1) * 2 ** (-(ell + 3) / 2.0) * mu**s) / np.pi matsum = 0 for k in range(0, j): matsum += ( (-1) ** k * binomialfloat(j + ell - 0.5, j - k - 1) * gamma((ell + s + 3) / 2.0 + k) ) / (mfactorial(k) * 0.5 ** ((ell + s + 3) / 2.0 + k)) for m in range(-ell, ell + 1): index_overlap = np.all([ell == sh_mat[1], m == sh_mat[0]], 0) odf_sh_mat[:, counter] = kappa * matsum * index_overlap counter += 1 return odf_sh_mat
[docs] def mapmri_isotropic_laplacian_reg_matrix(radial_order, mu): """Computes the Laplacian regularization matrix for MAP-MRI's isotropic implementation. See :footcite:p:`Fick2016b` eq. (C7). Parameters ---------- radial_order : unsigned int, an even integer that represent the order of the basis mu : float, isotropic scale factor of the isotropic MAP-MRI basis Returns ------- LR : Matrix, shape (N_coef, N_coef) Laplacian regularization matrix References ---------- .. footbibliography:: """ ind_mat = mapmri_isotropic_index_matrix(radial_order) return mapmri_isotropic_laplacian_reg_matrix_from_index_matrix(ind_mat, mu)
[docs] def mapmri_isotropic_laplacian_reg_matrix_from_index_matrix(ind_mat, mu): """Computes the Laplacian regularization matrix for MAP-MRI's isotropic implementation. See :footcite:p:`Fick2016b` eq. (C7). Parameters ---------- ind_mat : matrix (N_coef, 3), Basis order matrix mu : float, isotropic scale factor of the isotropic MAP-MRI basis Returns ------- LR : Matrix, shape (N_coef, N_coef) Laplacian regularization matrix References ---------- .. footbibliography:: """ n_elem = ind_mat.shape[0] LR = np.zeros((n_elem, n_elem)) for i in range(n_elem): for k in range(i, n_elem): if ind_mat[i, 1] == ind_mat[k, 1] and ind_mat[i, 2] == ind_mat[k, 2]: ji = ind_mat[i, 0] jk = ind_mat[k, 0] ell = ind_mat[i, 1] if ji == (jk + 2): LR[i, k] = LR[k, i] = ( 2.0 ** (2 - ell) * np.pi**2 * mu * gamma(5 / 2.0 + jk + ell) / gamma(jk) ) elif ji == (jk + 1): LR[i, k] = LR[k, i] = ( 2.0 ** (2 - ell) * np.pi**2 * mu * (-3 + 4 * ji + 2 * ell) * gamma(3 / 2.0 + jk + ell) / gamma(jk) ) elif ji == jk: LR[i, k] = ( 2.0 ** (-ell) * np.pi**2 * mu * ( 3 + 24 * ji**2 + 4 * (-2 + ell) * ell + 12 * ji * (-1 + 2 * ell) ) * gamma(1 / 2.0 + ji + ell) / gamma(ji) ) elif ji == (jk - 1): LR[i, k] = LR[k, i] = ( 2.0 ** (2 - ell) * np.pi**2 * mu * (-3 + 4 * jk + 2 * ell) * gamma(3 / 2.0 + ji + ell) / gamma(ji) ) elif ji == (jk - 2): LR[i, k] = LR[k, i] = ( 2.0 ** (2 - ell) * np.pi**2 * mu * gamma(5 / 2.0 + ji + ell) / gamma(ji) ) return LR
[docs] def mapmri_isotropic_index_matrix(radial_order): """Calculates the indices for the isotropic MAPMRI basis. See :footcite:p:`Ozarslan2013` Fig 8. Parameters ---------- radial_order : unsigned int radial order of isotropic MAPMRI basis Returns ------- index_matrix : array, shape (N,3) ordering of the basis in x, y, z References ---------- .. footbibliography:: """ index_matrix = [] for n in range(0, radial_order + 1, 2): for j in range(1, 2 + n // 2): for m in range(-1 * (n + 2 - 2 * j), (n + 3 - 2 * j)): index_matrix.append([j, n + 2 - 2 * j, m]) return np.array(index_matrix)
[docs] def create_rspace(gridsize, radius_max): """Create the real space table, that contains the points in which to compute the pdf. Parameters ---------- gridsize : unsigned int dimension of the propagator grid radius_max : float maximal radius in which compute the propagator Returns ------- tab : array, shape (N,3) real space points in which calculates the pdf """ radius = gridsize // 2 vecs = [] for i in range(-radius, radius + 1): for j in range(-radius, radius + 1): for k in range(0, radius + 1): vecs.append([i, j, k]) vecs = np.array(vecs, dtype=np.float32) # there are points in the corners farther than sphere radius points_inside_sphere = np.sqrt(np.einsum("ij,ij->i", vecs, vecs)) <= radius vecs_inside_sphere = vecs[points_inside_sphere] tab = vecs_inside_sphere / radius tab = tab * radius_max return tab
[docs] def delta(n, m): if n == m: return 1 return 0
[docs] def map_laplace_u(n, m): r"""S(n, m) static matrix for Laplacian regularization. See :footcite:p:`Fick2016b` eq. (13). Parameters ---------- n, m : unsigned int basis order of the MAP-MRI basis in different directions Returns ------- U : float, Analytical integral of :math:`\phi_n(q) * \phi_m(q)` References ---------- .. footbibliography:: """ return (-1) ** n * delta(n, m) / (2 * np.sqrt(np.pi))
[docs] def map_laplace_t(n, m): r"""L(m, n) static matrix for Laplacian regularization. See :footcite:p:`Fick2016b` eq. (12). Parameters ---------- n, m : unsigned int basis order of the MAP-MRI basis in different directions Returns ------- T : float Analytical integral of :math:`\phi_n(q) * \phi_m''(q)` References ---------- .. footbibliography:: """ a = np.sqrt((m - 1) * m) * delta(m - 2, n) b = np.sqrt((n - 1) * n) * delta(n - 2, m) c = (2 * n + 1) * delta(m, n) return np.pi ** (3 / 2.0) * (-1) ** (n + 1) * (a + b + c)
[docs] def map_laplace_s(n, m): r"""R(m,n) static matrix for Laplacian regularization. See :footcite:p:`Fick2016b` eq. (11). Parameters ---------- n, m : unsigned int basis order of the MAP-MRI basis in different directions Returns ------- S : float Analytical integral of :math:`\phi_n''(q) * \phi_m''(q)` References ---------- .. footbibliography:: """ k = 2 * np.pi ** (7 / 2.0) * (-1) ** n a0 = 3 * (2 * n**2 + 2 * n + 1) * delta(n, m) sqmn = np.sqrt(gamma(m + 1) / gamma(n + 1)) sqnm = 1 / sqmn an2 = 2 * (2 * n + 3) * sqmn * delta(m, n + 2) an4 = sqmn * delta(m, n + 4) am2 = 2 * (2 * m + 3) * sqnm * delta(m + 2, n) am4 = sqnm * delta(m + 4, n) return k * (a0 + an2 + an4 + am2 + am4)
[docs] def mapmri_STU_reg_matrices(radial_order): """Generate the static portions of the Laplacian regularization matrix. See :footcite:p:`Fick2016b` eq. (11, 12, 13). Parameters ---------- radial_order : unsigned int, an even integer that represent the order of the basis Returns ------- S, T, U : Matrices, shape (N_coef,N_coef) Regularization submatrices References ---------- .. footbibliography:: """ S = np.zeros((radial_order + 1, radial_order + 1)) for i in range(radial_order + 1): for j in range(radial_order + 1): S[i, j] = map_laplace_s(i, j) T = np.zeros((radial_order + 1, radial_order + 1)) for i in range(radial_order + 1): for j in range(radial_order + 1): T[i, j] = map_laplace_t(i, j) U = np.zeros((radial_order + 1, radial_order + 1)) for i in range(radial_order + 1): for j in range(radial_order + 1): U[i, j] = map_laplace_u(i, j) return S, T, U
[docs] def mapmri_laplacian_reg_matrix(ind_mat, mu, S_mat, T_mat, U_mat): """Put the Laplacian regularization matrix together. See :footcite:p:`Fick2016b` eq. (10). The static parts in S, T and U are multiplied and divided by the voxel-specific scale factors. Parameters ---------- ind_mat : matrix (N_coef, 3), Basis order matrix mu : array, shape (3,) scale factors of the basis for x, y, z S, T, U : matrices, shape (N_coef,N_coef) Regularization submatrices Returns ------- LR : matrix (N_coef, N_coef), Voxel-specific Laplacian regularization matrix References ---------- .. footbibliography:: """ ux, uy, uz = mu x, y, z = ind_mat.T n_elem = ind_mat.shape[0] LR = np.zeros((n_elem, n_elem)) for i in range(n_elem): for j in range(i, n_elem): if ( (x[i] - x[j]) % 2 == 0 and (y[i] - y[j]) % 2 == 0 and (z[i] - z[j]) % 2 == 0 ): LR[i, j] = LR[j, i] = ( (ux**3 / (uy * uz)) * S_mat[x[i], x[j]] * U_mat[y[i], y[j]] * U_mat[z[i], z[j]] + (uy**3 / (ux * uz)) * S_mat[y[i], y[j]] * U_mat[z[i], z[j]] * U_mat[x[i], x[j]] + (uz**3 / (ux * uy)) * S_mat[z[i], z[j]] * U_mat[x[i], x[j]] * U_mat[y[i], y[j]] + 2 * ((ux * uy) / uz) * T_mat[x[i], x[j]] * T_mat[y[i], y[j]] * U_mat[z[i], z[j]] + 2 * ((ux * uz) / uy) * T_mat[x[i], x[j]] * T_mat[z[i], z[j]] * U_mat[y[i], y[j]] + 2 * ((uz * uy) / ux) * T_mat[z[i], z[j]] * T_mat[y[i], y[j]] * U_mat[x[i], x[j]] ) return LR
[docs] @warning_for_keywords() def generalized_crossvalidation_array(data, M, LR, *, weights_array=None): """Generalized Cross Validation Function. See :footcite:p:`Fick2016b` eq. (15). Here weights_array is a numpy array with all values that should be considered in the GCV. It will run through the weights until the cost function starts to increase, then stop and take the last value as the optimum weight. Parameters ---------- data : array (N), Basis order matrix M : matrix, shape (N, Ncoef) mapmri observation matrix LR : matrix, shape (N_coef, N_coef) regularization matrix weights_array : array (N_of_weights) array of optional regularization weights References ---------- .. footbibliography:: """ if weights_array is None: lrange = np.linspace(0.05, 1, 20) # reasonably fast standard range else: lrange = weights_array samples = lrange.shape[0] MMt = np.dot(M.T, M) K = len(data) gcvold = gcvnew = 10e10 # set initialization gcv threshold very high i = -1 while gcvold >= gcvnew and i < samples - 2: gcvold = gcvnew i = i + 1 S = np.linalg.multi_dot([M, np.linalg.pinv(MMt + lrange[i] * LR), M.T]) trS = np.trace(S) normyytilde = np.linalg.norm(data - np.dot(S, data), 2) gcvnew = normyytilde / (K - trS) lopt = lrange[i - 1] return lopt
[docs] @warning_for_keywords() def generalized_crossvalidation(data, M, LR, *, gcv_startpoint=5e-2): """Generalized Cross Validation Function. Finds optimal regularization weight based on generalized cross-validation. See :footcite:p:`Craven1979` eq. (15). Parameters ---------- data : array (N), data array M : matrix, shape (N, Ncoef) mapmri observation matrix LR : matrix, shape (N_coef, N_coef) regularization matrix gcv_startpoint : float startpoint for the gcv optimization Returns ------- optimal_lambda : float, optimal regularization weight References ---------- .. footbibliography:: """ MMt = np.dot(M.T, M) K = len(data) bounds = ((1e-5, 10),) solver = Optimizer( fun=gcv_cost_function, x0=(gcv_startpoint,), args=((data, M, MMt, K, LR),), bounds=bounds, ) optimal_lambda = solver.xopt return optimal_lambda
[docs] def gcv_cost_function(weight, args): """The GCV cost function that is iterated. See :footcite:p:`Fick2016b` for further details about the method. References ---------- .. footbibliography:: """ data, M, MMt, K, LR = args S = np.linalg.multi_dot([M, np.linalg.pinv(MMt + weight * LR), M.T]) trS = np.trace(S) normyytilde = np.linalg.norm(data - np.dot(S, data), 2) gcv_value = normyytilde / (K - trS) return gcv_value