Source code for dipy.reconst.shm

"""Tools for using spherical harmonic models to fit diffusion data.

See :footcite:p:`Aganj2009`, :footcite:p:`Descoteaux2007`,
:footcite:p:`TristanVega2009a`, and :footcite:p:`TristanVega2010`.

References
----------
.. footbibliography::

Note about the Transpose:
In the literature the matrix representation of these methods is often written
as Y = Bx where B is some design matrix and Y and x are column vectors. In our
case the input data, a dwi stored as a nifti file for example, is stored as row
vectors (ndarrays) of the form (x, y, z, n), where n is the number of diffusion
directions. We could transpose and reshape the data to be (n, x*y*z), so that
we could directly plug it into the above equation. However, I have chosen to
keep the data as is and implement the relevant equations rewritten in the
following form: Y.T = x.T B.T, or in python syntax data = np.dot(sh_coef, B.T)
where data is Y.T and sh_coef is x.T.
"""

from warnings import warn

import numpy as np
from numpy.random import randint
import scipy.special as sps

from dipy.core.geometry import cart2sphere
from dipy.core.onetime import auto_attr
from dipy.reconst.cache import Cache
from dipy.reconst.odf import OdfFit, OdfModel
from dipy.testing.decorators import warning_for_keywords
from dipy.utils.deprecator import deprecate_with_version, deprecated_params

descoteaux07_legacy_msg = (
    "The legacy descoteaux07 SH basis uses absolute values for negative "
    "harmonic phase factors. It is outdated and will be deprecated in a "
    "future DIPY release. Consider using the new descoteaux07 basis by setting"
    "the `legacy` parameter to `False`."
)
tournier07_legacy_msg = (
    "The legacy tournier07 basis is not normalized. It is outdated and will "
    "be deprecated in a future release of DIPY. Consider using the new "
    "tournier07 basis by setting the `legacy` parameter to `False`."
)


def _copydoc(obj):
    def bandit(f):
        f.__doc__ = obj.__doc__
        return f

    return bandit


[docs] @deprecated_params("n", new_name="l_values", since="1.9", until="2.0") def forward_sdeconv_mat(r_rh, l_values): """Build forward spherical deconvolution matrix Parameters ---------- r_rh : ndarray Rotational harmonics coefficients for the single fiber response function. Each element ``rh[i]`` is associated with spherical harmonics of order ``2*i``. l_values : ndarray The orders ($l$) of spherical harmonic function associated with each row of the deconvolution matrix. Only even orders are allowed Returns ------- R : ndarray (N, N) Deconvolution matrix with shape (N, N) """ if np.any(l_values % 2): raise ValueError("l_values has odd orders, expecting only even orders") return np.diag(r_rh[l_values // 2])
[docs] @deprecated_params( [ "m", "n", ], new_name=["m_values", "l_values"], since="1.9", until="2.0", ) def sh_to_rh(r_sh, m_values, l_values): """Spherical harmonics (SH) to rotational harmonics (RH) Calculate the rotational harmonic decomposition up to harmonic phase factor ``m``, order ``l`` for an axially and antipodally symmetric function. Note that all ``m != 0`` coefficients will be ignored as axial symmetry is assumed. Hence, there will be ``(sh_order/2 + 1)`` non-zero coefficients. See :footcite:p:`Tournier2007` for further details about the method. Parameters ---------- r_sh : ndarray (N,) ndarray of SH coefficients for the single fiber response function. These coefficients must correspond to the real spherical harmonic functions produced by `shm.real_sh_descoteaux_from_index`. m_values : ndarray (N,) The phase factors ($m$) of the spherical harmonic function associated with each coefficient. l_values : ndarray (N,) The orders ($l$) of the spherical harmonic function associated with each coefficient. Returns ------- r_rh : ndarray (``(sh_order + 1)*(sh_order + 2)/2``,) Rotational harmonics coefficients representing the input `r_sh` See Also -------- shm.real_sh_descoteaux_from_index, shm.real_sh_descoteaux References ---------- .. footbibliography:: """ mask = m_values == 0 # The delta function at theta = phi = 0 is known to have zero coefficients # where m != 0, therefore we need only compute the coefficients at m=0. dirac_sh = gen_dirac(0, l_values[mask], 0, 0) r_rh = r_sh[mask] / dirac_sh return r_rh
[docs] @deprecated_params( [ "m", "n", ], new_name=["m_values", "l_values"], since="1.9", until="2.0", ) @warning_for_keywords() def gen_dirac(m_values, l_values, theta, phi, *, legacy=True): """Generate Dirac delta function orientated in (theta, phi) on the sphere The spherical harmonics (SH) representation of this Dirac is returned as coefficients to spherical harmonic functions produced from ``descoteaux07`` basis. Parameters ---------- m_values : ndarray (N,) The phase factors of the spherical harmonic function associated with each coefficient. l_values : ndarray (N,) The order ($l$) of the spherical harmonic function associated with each coefficient. theta : float [0, pi] The polar (colatitudinal) coordinate. phi : float [0, 2*pi] The azimuthal (longitudinal) coordinate. legacy: bool, optional If true, uses DIPY's legacy descoteaux07 implementation (where $|m|$ is used for m < 0). Else, implements the basis as defined in Descoteaux et al. 2007 (without the absolute value). See Also -------- shm.real_sh_descoteaux_from_index, shm.real_sh_descoteaux Returns ------- dirac : ndarray SH coefficients representing the Dirac function. The shape of this is `(m + 2) * (m + 1) / 2`. """ return real_sh_descoteaux_from_index(m_values, l_values, theta, phi, legacy=legacy)
[docs] @deprecated_params( [ "m", "n", ], new_name=["m_values", "l_values"], since="1.9", until="2.0", ) @warning_for_keywords() def spherical_harmonics(m_values, l_values, theta, phi, *, use_scipy=True): """Compute spherical harmonics. This may take scalar or array arguments. The inputs will be broadcast against each other. Parameters ---------- m_values : array of int ``|m| <= l`` The phase factors ($m$) of the harmonics. l_values : array of int ``l >= 0`` The orders ($l$) of the harmonics. theta : float [0, 2*pi] The azimuthal (longitudinal) coordinate. phi : float [0, pi] The polar (colatitudinal) coordinate. use_scipy : bool, optional If True, use scipy implementation. Returns ------- y_mn : complex float The harmonic $Y_l^m$ sampled at ``theta`` and ``phi``. Notes ----- This is a faster implementation of scipy.special.sph_harm for scipy version < 0.15.0. For scipy 0.15 and onwards, we use the scipy implementation of the function. The usual definitions for ``theta` and `phi`` used in DIPY are interchanged in the method definition to agree with the definitions in scipy.special.sph_harm, where `theta` represents the azimuthal coordinate and `phi` represents the polar coordinate. Although scipy uses a naming convention where ``m`` is the order and ``n`` is the degree of the SH, the opposite of DIPY's, their definition for both parameters is the same as ours, with ``l >= 0`` and ``|m| <= l``. """ if use_scipy: return sps.sph_harm(m_values, l_values, theta, phi, dtype=complex) x = np.cos(phi) val = sps.lpmv(m_values, l_values, x).astype(complex) val *= np.sqrt((2 * l_values + 1) / 4.0 / np.pi) val *= np.exp( 0.5 * (sps.gammaln(l_values - m_values + 1) - sps.gammaln(l_values + m_values + 1)) ) val = val * np.exp(1j * m_values * theta) return val
[docs] @deprecate_with_version( "dipy.reconst.shm.real_sph_harm is deprecated, " "Please use " "dipy.reconst.shm.real_sh_descoteaux_from_index " "instead", since="1.3", until="2.0", ) @deprecated_params( [ "m", "n", ], new_name=["m_values", "l_values"], since="1.9", until="2.0", ) def real_sph_harm(m_values, l_values, theta, phi): r"""Compute real spherical harmonics. Where the real harmonic $Y_l^m$ is defined to be: .. math:: :nowrap: Y_l^m = \begin{cases} \sqrt{2} * \Im(Y_l^m) \; if m > 0 \\ Y^0_l \; if m = 0 \\ \sqrt{2} * \Re(Y_l^{|m|}) \; if m < 0 \\ \end{cases} This may take scalar or array arguments. The inputs will be broadcast against each other. Parameters ---------- m_values : array of int ``|m| <= l`` The phase factors ($m$) of the harmonics. l_values : array of int ``l >= 0`` The orders ($l$) of the harmonics. theta : float [0, pi] The polar (colatitudinal) coordinate. phi : float [0, 2*pi] The azimuthal (longitudinal) coordinate. Returns ------- y_mn : real float The real harmonic $Y_l^m$ sampled at `theta` and `phi`. See Also -------- scipy.special.sph_harm """ return real_sh_descoteaux_from_index(m_values, l_values, theta, phi, legacy=True)
[docs] @deprecated_params( [ "m", "n", ], new_name=["m_values", "l_values"], since="1.9", until="2.0", ) @warning_for_keywords() def real_sh_tournier_from_index(m_values, l_values, theta, phi, *, legacy=True): r"""Compute real spherical harmonics. The SH are computed as initially defined in :footcite:p:`Tournier2007` then updated in MRtrix3 :footcite:p:`Tournier2019`, where the real harmonic $Y_l^m$ is defined to be: .. math:: :nowrap: Y_l^m = \begin{cases} \sqrt{2} * \Re(Y_l^m) \; if m > 0 \\ Y^0_l \; if m = 0 \\ \sqrt{2} * \Im(Y_l^{|m|}) \; if m < 0 \\ \end{cases} This may take scalar or array arguments. The inputs will be broadcast against each other. Parameters ---------- m_values : array of int ``|m| <= l`` The phase factors ($m$) of the harmonics. l_values : array of int ``l >= 0`` The orders ($l$) of the harmonics. theta : float [0, pi] The polar (colatitudinal) coordinate. phi : float [0, 2*pi] The azimuthal (longitudinal) coordinate. legacy: bool, optional If true, uses MRtrix 0.2 SH basis definition, where the ``sqrt(2)`` factor is omitted. Else, uses the MRtrix 3 definition presented above. Returns ------- real_sh : real float The real harmonics $Y_l^m$ sampled at ``theta`` and ``phi``. References ---------- .. footbibliography:: """ # In the m < 0 case, Tournier basis considers |m| sh = spherical_harmonics(np.abs(m_values), l_values, phi, theta) real_sh = np.where(m_values < 0, sh.imag, sh.real) if not legacy: # The Tournier basis from MRtrix3 is normalized real_sh *= np.where(m_values == 0, 1.0, np.sqrt(2)) else: warn(tournier07_legacy_msg, category=PendingDeprecationWarning, stacklevel=2) return real_sh
[docs] @deprecated_params( [ "m", "n", ], new_name=["m_values", "l_values"], since="1.9", until="2.0", ) @warning_for_keywords() def real_sh_descoteaux_from_index(m_values, l_values, theta, phi, *, legacy=True): r"""Compute real spherical harmonics. The definition adopted here follows :footcite:p:`Descoteaux2007`, where the real harmonic $Y_l^m$ is defined to be: .. math:: :nowrap: Y_l^m = \begin{cases} \sqrt{2} * \Im(Y_l^m) \; if m > 0 \\ Y^0_l \; if m = 0 \\ \sqrt{2} * \Re(Y_l^m) \; if m < 0 \\ \end{cases} This may take scalar or array arguments. The inputs will be broadcast against each other. Parameters ---------- m_values : array of int ``|m| <= l`` The phase factors ($m$) of the harmonics. l_values : array of int ``l >= 0`` The orders ($l$) of the harmonics. theta : float [0, pi] The polar (colatitudinal) coordinate. phi : float [0, 2*pi] The azimuthal (longitudinal) coordinate. legacy: bool, optional If true, uses DIPY's legacy descoteaux07 implementation (where $|m|$ is used for m < 0). Else, implements the basis as defined in Descoteaux et al. 2007 (without the absolute value). Returns ------- real_sh : real float The real harmonic $Y_l^m$ sampled at ``theta`` and ``phi``. References ---------- .. footbibliography:: """ if legacy: # In the case where m < 0, legacy descoteaux basis considers |m| warn(descoteaux07_legacy_msg, category=PendingDeprecationWarning, stacklevel=2) sh = spherical_harmonics(np.abs(m_values), l_values, phi, theta) else: # In the cited paper, the basis is defined without the absolute value sh = spherical_harmonics(m_values, l_values, phi, theta) real_sh = np.where(m_values > 0, sh.imag, sh.real) real_sh *= np.where(m_values == 0, 1.0, np.sqrt(2)) return real_sh
[docs] @deprecated_params("sh_order", new_name="sh_order_max", since="1.9", until="2.0") @warning_for_keywords() def real_sh_tournier(sh_order_max, theta, phi, *, full_basis=False, legacy=True): r"""Compute real spherical harmonics. The SH are computed as initially defined in :footcite:p:`Tournier2007` then updated in MRtrix3 :footcite:p:`Tournier2019`, where the real harmonic $Y_l^m$ is defined to be: .. math:: :nowrap: Y_l^m = \begin{cases} \sqrt{2} * \Re(Y_l^m) \; if m > 0 \\ Y^0_l \; if m = 0 \\ \sqrt{2} * \Im(Y_l^{|m|}) \; if m < 0 \\ \end{cases} This may take scalar or array arguments. The inputs will be broadcast against each other. Parameters ---------- sh_order_max : int The maximum order ($l$) of the spherical harmonic basis. theta : float [0, pi] The polar (colatitudinal) coordinate. phi : float [0, 2*pi] The azimuthal (longitudinal) coordinate. full_basis: bool, optional If true, returns a basis including odd order SH functions as well as even order SH functions. Else returns only even order SH functions. legacy: bool, optional If true, uses MRtrix 0.2 SH basis definition, where the ``sqrt(2)`` factor is omitted. Else, uses MRtrix 3 definition presented above. Returns ------- real_sh : real float The real harmonic $Y_l^m$ sampled at ``theta`` and ``phi``. m_values : array of int The phase factor ($m$) of the harmonics. l_values : array of int The order ($l$) of the harmonics. References ---------- .. footbibliography:: """ m_values, l_values = sph_harm_ind_list(sh_order_max, full_basis=full_basis) phi = np.reshape(phi, [-1, 1]) theta = np.reshape(theta, [-1, 1]) real_sh = real_sh_tournier_from_index(m_values, l_values, theta, phi, legacy=legacy) return real_sh, m_values, l_values
[docs] @deprecated_params("sh_order", new_name="sh_order_max", since="1.9", until="2.0") @warning_for_keywords() def real_sh_descoteaux(sh_order_max, theta, phi, *, full_basis=False, legacy=True): r"""Compute real spherical harmonics. The definition adopted here follows :footcite:p:`Descoteaux2007`, where the real harmonic $Y_l^m$ is defined to be: .. math:: :nowrap: Y_l^m = \begin{cases} \sqrt{2} * \Im(Y_l^m) \; if m > 0 \\ Y^0_l \; if m = 0 \\ \sqrt{2} * \Re(Y_l^m) \; if m < 0 \\ \end{cases} This may take scalar or array arguments. The inputs will be broadcast against each other. Parameters ---------- sh_order_max : int The maximum order ($l$) of the spherical harmonic basis. theta : float [0, pi] The polar (colatitudinal) coordinate. phi : float [0, 2*pi] The azimuthal (longitudinal) coordinate. full_basis: bool, optional If true, returns a basis including odd order SH functions as well as even order SH functions. Otherwise returns only even order SH functions. legacy: bool, optional If true, uses DIPY's legacy descoteaux07 implementation (where $|m|$ for m < 0). Else, implements the basis as defined in Descoteaux et al. 2007. Returns ------- real_sh : real float The real harmonic $Y_l^m$ sampled at ``theta`` and ``phi``. m_values : array of int The phase factor ($m$) of the harmonics. l_values : array of int The order ($l$) of the harmonics. References ---------- .. footbibliography:: """ m_value, l_value = sph_harm_ind_list(sh_order_max, full_basis=full_basis) phi = np.reshape(phi, [-1, 1]) theta = np.reshape(theta, [-1, 1]) real_sh = real_sh_descoteaux_from_index(m_value, l_value, theta, phi, legacy=legacy) return real_sh, m_value, l_value
[docs] @deprecate_with_version( "dipy.reconst.shm.real_sym_sh_mrtrix is deprecated, " "Please use dipy.reconst.shm.real_sh_tournier instead", since="1.3", until="2.0", ) @deprecated_params("sh_order", new_name="sh_order_max", since="1.9", until="2.0") def real_sym_sh_mrtrix(sh_order_max, theta, phi): r""" Compute real symmetric spherical harmonics. The SH are computed as initially defined in :footcite:t:`Tournier2007`, where the real harmonic $Y_l^m$ is defined to be: .. math:: :nowrap: Y_l^m = \begin{cases} \Re(Y_l^m) \; if m > 0 \\ Y^0_l \; if m = 0 \\ \Im(Y_l^{|m|}) \; if m < 0 \\ \end{cases} This may take scalar or array arguments. The inputs will be broadcast against each other. Parameters ---------- sh_order_max : int The maximum order ($l$) of the spherical harmonic basis. theta : float [0, pi] The polar (colatitudinal) coordinate. phi : float [0, 2*pi] The azimuthal (longitudinal) coordinate. Returns ------- y_mn : real float The real harmonic $Y_l^m$ sampled at ``theta`` and ``phi`` as implemented in mrtrix. Warning: the basis is :footcite:t:`Tournier2007`; :footcite:p:`Tournier2004` is slightly different. m_values : array The phase factor ($m$) of the harmonics. l_values : array The order ($l$) of the harmonics. References ---------- .. footbibliography:: """ return real_sh_tournier(sh_order_max, theta, phi, legacy=True)
[docs] @deprecate_with_version( "dipy.reconst.shm.real_sym_sh_basis is deprecated, " "Please use dipy.reconst.shm.real_sh_descoteaux " "instead", since="1.3", until="2.0", ) @deprecated_params("sh_order", new_name="sh_order_max", since="1.9", until="2.0") def real_sym_sh_basis(sh_order_max, theta, phi): r"""Samples a real symmetric spherical harmonic basis at point on the sphere Samples the basis functions up to order `sh_order_max` at points on the sphere given by `theta` and `phi`. The basis functions are defined here the same way as in :footcite:p:`Descoteaux2007` where the real harmonic $Y_l^m$ is defined to be: .. math:: :nowrap: Y_l^m = \begin{cases} \sqrt{2} * \Im(Y_l^m) \; if m > 0 \\ Y^0_l \; if m = 0 \\ \sqrt{2} * \Im(Y_l^{|m|}) \; if m < 0 \\ \end{cases} This may take scalar or array arguments. The inputs will be broadcast against each other. Parameters ---------- sh_order_max : int The maximum order ($l$) of the spherical harmonic basis. Even int > 0, max spherical harmonic order theta : float [0, 2*pi] The azimuthal (longitudinal) coordinate. phi : float [0, pi] The polar (colatitudinal) coordinate. Returns ------- y_mn : real float The real harmonic $Y_l^m$ sampled at ``theta`` and ``phi`` m_values : array of int The phase factor ($m$) of the harmonics. l_values : array of int The order ($l$) of the harmonics. References ---------- .. footbibliography:: """ return real_sh_descoteaux(sh_order_max, theta, phi, legacy=True)
sph_harm_lookup = { None: real_sh_descoteaux, "tournier07": real_sh_tournier, "descoteaux07": real_sh_descoteaux, }
[docs] @deprecated_params("sh_order", new_name="sh_order_max", since="1.9", until="2.0") @warning_for_keywords() def sph_harm_ind_list(sh_order_max, *, full_basis=False): """ Returns the order (``l``) and phase_factor (``m``) of all the symmetric spherical harmonics of order less then or equal to ``sh_order_max``. The results, ``m_list`` and ``l_list`` are kx1 arrays, where k depends on ``sh_order_max``. They can be passed to :func:`real_sh_descoteaux_from_index` and :func:``real_sh_tournier_from_index``. Parameters ---------- sh_order_max : int The maximum order ($l$) of the spherical harmonic basis. Even int > 0, max order to return full_basis: bool, optional True for SH basis with even and odd order terms Returns ------- m_list : array of int phase factors ($m$) of even spherical harmonics l_list : array of int orders ($l$) of even spherical harmonics See Also -------- shm.real_sh_descoteaux_from_index, shm.real_sh_tournier_from_index """ if full_basis: l_range = np.arange(0, sh_order_max + 1, dtype=int) ncoef = int((sh_order_max + 1) * (sh_order_max + 1)) else: if sh_order_max % 2 != 0: raise ValueError("sh_order_max must be an even integer >= 0") l_range = np.arange(0, sh_order_max + 1, 2, dtype=int) ncoef = int((sh_order_max + 2) * (sh_order_max + 1) // 2) l_list = np.repeat(l_range, l_range * 2 + 1) offset = 0 m_list = np.empty(ncoef, "int") for ii in l_range: m_list[offset : offset + 2 * ii + 1] = np.arange(-ii, ii + 1) offset = offset + 2 * ii + 1 # makes the arrays ncoef by 1, allows for easy broadcasting later in code return m_list, l_list
[docs] @warning_for_keywords() def order_from_ncoef(ncoef, *, full_basis=False): """ Given a number ``n`` of coefficients, calculate back the ``sh_order_max`` Parameters ---------- ncoef: int number of coefficients full_basis: bool, optional True when coefficients are for a full SH basis. Returns ------- sh_order_max: int maximum order ($l$) of SH basis """ if full_basis: # Solve the equation : # ncoef = (sh_order_max + 1) * (sh_order_max + 1) return int(np.sqrt(ncoef) - 1) # Solve the quadratic equation derived from : # ncoef = (sh_order_max + 2) * (sh_order_max + 1) / 2 return -1 + int(np.sqrt(9 - 4 * (2 - 2 * ncoef)) // 2)
[docs] def smooth_pinv(B, L): """Regularized pseudo-inverse Computes a regularized least square inverse of B Parameters ---------- B : array_like (n, m) Matrix to be inverted L : array_like (m,) Returns ------- inv : ndarray (m, n) regularized least square inverse of B Notes ----- In the literature this inverse is often written $(B^{T}B+L^{2})^{-1}B^{T}$. However here this inverse is implemented using the pseudo-inverse because it is more numerically stable than the direct implementation of the matrix product. """ L = np.diag(L) inv = np.linalg.pinv(np.concatenate((B, L))) return inv[:, : len(B)]
[docs] def lazy_index(index): """Produces a lazy index Returns a slice that can be used for indexing an array, if no slice can be made index is returned as is. """ index = np.array(index) assert index.ndim == 1 if index.dtype.kind == "b": index = index.nonzero()[0] if len(index) == 1: return slice(index[0], index[0] + 1) step = np.unique(np.diff(index)) if len(step) != 1 or step[0] == 0: return index else: return slice(index[0], index[-1] + 1, step[0])
@warning_for_keywords() def _gfa_sh(coef, *, sh0_index=0): """The gfa of the odf, computed from the spherical harmonic coefficients This is a private function because it only works for coefficients of normalized sh bases. Parameters ---------- coef : array The coefficients, using a normalized sh basis, that represent each odf. sh0_index : int, optional The index of the coefficient associated with the 0th order sh harmonic. Returns ------- gfa_values : array The gfa of each odf. """ coef_sq = coef**2 numer = coef_sq[..., sh0_index] denom = coef_sq.sum(-1) # The sum of the square of the coefficients being zero is the same as all # the coefficients being zero allzero = denom == 0 # By adding 1 to numer and denom where both and are 0, we prevent 0/0 numer = numer + allzero denom = denom + allzero return np.sqrt(1.0 - (numer / denom))
[docs] class SphHarmModel(OdfModel, Cache): """To be subclassed by all models that return a SphHarmFit when fit."""
[docs] def sampling_matrix(self, sphere): """The matrix needed to sample ODFs from coefficients of the model. Parameters ---------- sphere : Sphere Points used to sample ODF. Returns ------- sampling_matrix : array The size of the matrix will be (N, M) where N is the number of vertices on sphere and M is the number of coefficients needed by the model. """ sampling_matrix = self.cache_get("sampling_matrix", sphere) if sampling_matrix is None: sh_order = self.sh_order_max theta = sphere.theta phi = sphere.phi sampling_matrix, m_values, l_values = real_sh_descoteaux( sh_order, theta, phi ) self.cache_set("sampling_matrix", sphere, sampling_matrix) return sampling_matrix
[docs] class QballBaseModel(SphHarmModel): """To be subclassed by Qball type models.""" @deprecated_params("sh_order", new_name="sh_order_max", since="1.9", until="2.0") @warning_for_keywords() def __init__( self, gtab, sh_order_max, *, smooth=0.006, min_signal=1e-5, assume_normed=False ): """Creates a model that can be used to fit or sample diffusion data Parameters ---------- gtab : GradientTable Diffusion gradients used to acquire data sh_order_max : even int >= 0 the maximal spherical harmonic order ($l$) of the model smooth : float between 0 and 1, optional The regularization parameter of the model min_signal : float, > 0, optional During fitting, all signal values less than `min_signal` are clipped to `min_signal`. This is done primarily to avoid values less than or equal to zero when taking logs. assume_normed : bool, optional If True, clipping and normalization of the data with respect to the mean B0 signal are skipped during mode fitting. This is an advanced feature and should be used with care. See Also -------- normalize_data """ SphHarmModel.__init__(self, gtab) self._where_b0s = lazy_index(gtab.b0s_mask) self._where_dwi = lazy_index(~gtab.b0s_mask) self.assume_normed = assume_normed self.min_signal = min_signal x, y, z = gtab.gradients[self._where_dwi].T r, theta, phi = cart2sphere(x, y, z) B, m_values, l_values = real_sh_descoteaux( sh_order_max, theta[:, None], phi[:, None] ) L = -l_values * (l_values + 1) legendre0 = sps.lpn(sh_order_max, 0)[0] F = legendre0[l_values] self.sh_order_max = sh_order_max self.B = B self.m_values = m_values self.l_values = l_values self._set_fit_matrix(B, L, F, smooth) def _set_fit_matrix(self, *args): """Should be set in a subclass and is called by __init__""" msg = "User must implement this method in a subclass" raise NotImplementedError(msg)
[docs] @warning_for_keywords() def fit(self, data, *, mask=None): """Fits the model to diffusion data and returns the model fit""" # Normalize the data and fit coefficients if not self.assume_normed: data = normalize_data(data, self._where_b0s, min_signal=self.min_signal) # Compute coefficients using abstract method coef = self._get_shm_coef(data) # Apply the mask to the coefficients if mask is not None: mask = np.asarray(mask, dtype=bool) coef *= mask[..., None] return SphHarmFit(self, coef, mask)
[docs] class SphHarmFit(OdfFit): """Diffusion data fit to a spherical harmonic model""" def __init__(self, model, shm_coef, mask): self.model = model self._shm_coef = shm_coef self.mask = mask @property def shape(self): return self._shm_coef.shape[:-1] def __getitem__(self, index): """Allowing indexing into fit""" # Index shm_coefficients if isinstance(index, tuple): coef_index = index + (Ellipsis,) else: coef_index = index new_coef = self._shm_coef[coef_index] # Index mask if self.mask is not None: new_mask = self.mask[index] assert new_mask.shape == new_coef.shape[:-1] else: new_mask = None return SphHarmFit(self.model, new_coef, new_mask)
[docs] def odf(self, sphere): """Samples the odf function on the points of a sphere Parameters ---------- sphere : Sphere The points on which to sample the odf. Returns ------- values : ndarray The value of the odf on each point of `sphere`. """ B = self.model.sampling_matrix(sphere) return np.dot(self.shm_coeff, B.T)
[docs] @auto_attr def gfa(self): return _gfa_sh(self.shm_coeff, sh0_index=0)
@property def shm_coeff(self): """The spherical harmonic coefficients of the odf Make this a property for now, if there is a use case for modifying the coefficients we can add a setter or expose the coefficients more directly """ return self._shm_coef
[docs] @warning_for_keywords() def predict(self, *, gtab=None, S0=1.0): """ Predict the diffusion signal from the model coefficients. Parameters ---------- gtab : a GradientTable class instance The directions and bvalues on which prediction is desired S0 : float array The mean non-diffusion-weighted signal in each voxel. """ if not hasattr(self.model, "predict"): msg = "This model does not have prediction implemented yet" raise NotImplementedError(msg) return self.model.predict(self._shm_coef, gtab=gtab, S0=S0)
[docs] class CsaOdfModel(QballBaseModel): """Implementation of Constant Solid Angle reconstruction method. See :footcite:p:`Aganj2009` for further details about the method. References ---------- .. footbibliography:: """ min = 0.001 max = 0.999 _n0_const = 0.5 / np.sqrt(np.pi) def _set_fit_matrix(self, B, L, F, smooth): """The fit matrix, is used by fit_coefficients to return the coefficients of the odf""" invB = smooth_pinv(B, np.sqrt(smooth) * L) L = L[:, None] F = F[:, None] self._fit_matrix = (F * L) / (8 * np.pi) * invB @warning_for_keywords() def _get_shm_coef(self, data, *, mask=None): """Returns the coefficients of the model""" data = data[..., self._where_dwi] data = data.clip(self.min, self.max) loglog_data = np.log(-np.log(data)) sh_coef = np.dot(loglog_data, self._fit_matrix.T) sh_coef[..., 0] = self._n0_const return sh_coef
[docs] class OpdtModel(QballBaseModel): """Implementation of Orientation Probability Density Transform reconstruction method. See :footcite:p:`TristanVega2009a` and :footcite:p:`TristanVega2010` for further details about the method. References ---------- .. footbibliography:: """ def _set_fit_matrix(self, B, L, F, smooth): invB = smooth_pinv(B, np.sqrt(smooth) * L) L = L[:, None] F = F[:, None] delta_b = F * L * invB delta_q = 4 * F * invB self._fit_matrix = delta_b, delta_q @warning_for_keywords() def _get_shm_coef(self, data, *, mask=None): """Returns the coefficients of the model""" delta_b, delta_q = self._fit_matrix return _slowadc_formula(data[..., self._where_dwi], delta_b, delta_q)
def _slowadc_formula(data, delta_b, delta_q): """formula used in SlowAdcOpdfModel""" logd = -np.log(data) return np.dot(logd * (1.5 - logd) * data, delta_q.T) - np.dot(data, delta_b.T)
[docs] class QballModel(QballBaseModel): """Implementation of regularized Qball reconstruction method. See :footcite:p:`Descoteaux2007` for further details about the method. References ---------- .. footbibliography:: """ def _set_fit_matrix(self, B, L, F, smooth): invB = smooth_pinv(B, np.sqrt(smooth) * L) F = F[:, None] self._fit_matrix = F * invB @warning_for_keywords() def _get_shm_coef(self, data, *, mask=None): """Returns the coefficients of the model""" return np.dot(data[..., self._where_dwi], self._fit_matrix.T)
[docs] @warning_for_keywords() def normalize_data(data, where_b0, *, min_signal=1e-5, out=None): """Normalizes the data with respect to the mean b0""" if out is None: out = np.array(data, dtype="float32", copy=True) else: if out.dtype.kind != "f": raise ValueError("out must be floating point") out[:] = data out.clip(min_signal, out=out) b0 = out[..., where_b0].mean(-1) out /= b0[..., None] return out
[docs] def hat(B): """Returns the hat matrix for the design matrix B""" U, S, V = np.linalg.svd(B, False) H = np.dot(U, U.T) return H
[docs] def lcr_matrix(H): """Returns a matrix for computing leveraged, centered residuals from data if r = (d-Hd), the leveraged centered residuals are lcr = (r/l)-mean(r/l) returns the matrix R, such that lcr = Rd """ if H.ndim != 2 or H.shape[0] != H.shape[1]: raise ValueError("H should be a square matrix") leverages = np.sqrt(1 - H.diagonal(), where=H.diagonal() < 1) leverages = leverages[:, None] R = (np.eye(len(H)) - H) / leverages return R - R.mean(0)
[docs] @warning_for_keywords() def bootstrap_data_array(data, H, R, *, permute=None): """Applies the Residual Bootstraps to the data given H and R data must be normalized, ie 0 < data <= 1 This function, and the bootstrap_data_voxel function, calculate residual-bootstrap samples given a Hat matrix and a Residual matrix. These samples can be used for non-parametric statistics or for bootstrap probabilistic tractography, See :footcite:p:`Berman2008`, :footcite:p:`Haroon2009`, and :footcite:p:`Jeurissen2011`. References ---------- .. footbibliography:: """ if permute is None: permute = randint(data.shape[-1], size=data.shape[-1]) assert R.shape == H.shape assert len(permute) == R.shape[-1] R = R[permute] data = np.dot(data, (H + R).T) return data
[docs] @warning_for_keywords() def bootstrap_data_voxel(data, H, R, *, permute=None): """Like bootstrap_data_array but faster when for a single voxel data must be 1d and normalized """ if permute is None: permute = randint(data.shape[-1], size=data.shape[-1]) r = np.dot(data, R.T) boot_data = np.dot(data, H.T) boot_data += r[permute] return boot_data
[docs] class ResidualBootstrapWrapper: """Returns a residual bootstrap sample of the signal_object when indexed Wraps a signal_object, this signal object can be an interpolator. When indexed, the wrapper indexes the signal_object to get the signal. There wrapper than samples the residual bootstrap distribution of signal and returns that sample. """ @warning_for_keywords() def __init__(self, signal_object, B, where_dwi, *, min_signal=1e-5): """Builds a ResidualBootstrapWapper Given some linear model described by B, the design matrix, and a signal_object, returns an object which can sample the residual bootstrap distribution of the signal. We assume that the signals are normalized so we clip the bootstrap samples to be between `min_signal` and 1. Parameters ---------- signal_object : some object that can be indexed This object should return diffusion weighted signals when indexed. B : ndarray, ndim=2 The design matrix of the spherical harmonics model used to fit the data. This is the model that will be used to compute the residuals and sample the residual bootstrap distribution where_dwi : indexing object to find diffusion weighted signals from signal min_signal : float The lowest allowable signal. """ self._signal_object = signal_object self._H = hat(B) self._R = lcr_matrix(self._H) self._min_signal = min_signal self._where_dwi = where_dwi self.data = signal_object.data self.voxel_size = signal_object.voxel_size def __getitem__(self, index): """Indexes self._signal_object and bootstraps the result""" signal = self._signal_object[index].copy() dwi_signal = signal[self._where_dwi] boot_signal = bootstrap_data_voxel(dwi_signal, self._H, self._R) boot_signal.clip(self._min_signal, 1.0, out=boot_signal) signal[self._where_dwi] = boot_signal return signal
[docs] @deprecated_params("sh_order", new_name="sh_order_max", since="1.9", until="2.0") @warning_for_keywords() def sf_to_sh( sf, sphere, *, sh_order_max=4, basis_type=None, full_basis=False, legacy=True, smooth=0.0, ): """Spherical function to spherical harmonics (SH). Parameters ---------- sf : ndarray Values of a function on the given ``sphere``. sphere : Sphere The points on which the sf is defined. sh_order_max : int, optional Maximum SH order (l) in the SH fit. For ``sh_order_max``, there will be ``(sh_order_max + 1) * (sh_order_max + 2) / 2`` SH coefficients for a symmetric basis and ``(sh_order_max + 1) * (sh_order_max + 1)`` coefficients for a full SH basis. basis_type : {None, 'tournier07', 'descoteaux07'}, optional ``None`` for the default DIPY basis, ``tournier07`` for the Tournier 2007 :footcite:p:`Tournier2007`, :footcite:p:`Tournier2019` basis, ``descoteaux07`` for the Descoteaux 2007 :footcite:p:`Descoteaux2007` basis, (``None`` defaults to ``descoteaux07``). full_basis: bool, optional True for using a SH basis containing even and odd order SH functions. False for using a SH basis consisting only of even order SH functions. legacy: bool, optional True to use a legacy basis definition for backward compatibility with previous ``tournier07`` and ``descoteaux07`` implementations. smooth : float, optional Lambda-regularization in the SH fit. Returns ------- sh : ndarray SH coefficients representing the input function. References ---------- .. footbibliography:: """ sph_harm_basis = sph_harm_lookup.get(basis_type) if sph_harm_basis is None: raise ValueError("Invalid basis name.") B, m_values, l_values = sph_harm_basis( sh_order_max, sphere.theta, sphere.phi, full_basis=full_basis, legacy=legacy ) L = -l_values * (l_values + 1) invB = smooth_pinv(B, np.sqrt(smooth) * L) sh = np.dot(sf, invB.T) return sh
[docs] @deprecated_params("sh_order", new_name="sh_order_max", since="1.9", until="2.0") @warning_for_keywords() def sh_to_sf( sh, sphere, *, sh_order_max=4, basis_type=None, full_basis=False, legacy=True ): """Spherical harmonics (SH) to spherical function (SF). Parameters ---------- sh : ndarray SH coefficients representing a spherical function. sphere : Sphere The points on which to sample the spherical function. sh_order_max : int, optional Maximum SH order (l) in the SH fit. For ``sh_order_max``, there will be ``(sh_order_max + 1) * (sh_order_max + 2) / 2`` SH coefficients for a symmetric basis and ``(sh_order_max + 1) * (sh_order_max + 1)`` coefficients for a full SH basis. basis_type : {None, 'tournier07', 'descoteaux07'}, optional ``None`` for the default DIPY basis, ``tournier07`` for the Tournier 2007 :footcite:p:`Tournier2007`, :footcite:p:`Tournier2019` basis, ``descoteaux07`` for the Descoteaux 2007 :footcite:p:`Descoteaux2007` basis, (``None`` defaults to ``descoteaux07``). full_basis: bool, optional True to use a SH basis containing even and odd order SH functions. Else, use a SH basis consisting only of even order SH functions. legacy: bool, optional True to use a legacy basis definition for backward compatibility with previous ``tournier07`` and ``descoteaux07`` implementations. Returns ------- sf : ndarray Spherical function values on the ``sphere``. References ---------- .. footbibliography:: """ sph_harm_basis = sph_harm_lookup.get(basis_type) if sph_harm_basis is None: raise ValueError("Invalid basis name.") B, m_values, l_values = sph_harm_basis( sh_order_max, sphere.theta, sphere.phi, full_basis=full_basis, legacy=legacy ) sf = np.dot(sh, B.T) return sf
[docs] @deprecated_params("sh_order", new_name="sh_order_max", since="1.9", until="2.0") @warning_for_keywords() def sh_to_sf_matrix( sphere, *, sh_order_max=4, basis_type=None, full_basis=False, legacy=True, return_inv=True, smooth=0, ): """Matrix that transforms Spherical harmonics (SH) to spherical function (SF). Parameters ---------- sphere : Sphere The points on which to sample the spherical function. sh_order_max : int, optional Maximum SH order in the SH fit. For ``sh_order_max``, there will be ``(sh_order_max + 1) * (sh_order_max + 2) / 2`` SH coefficients for a symmetric basis and ``(sh_order_max + 1) * (sh_order_max + 1)`` coefficients for a full SH basis. basis_type : {None, 'tournier07', 'descoteaux07'}, optional ``None`` for the default DIPY basis, ``tournier07`` for the Tournier 2007 :footcite:p:`Tournier2007`, :footcite:p:`Tournier2019` basis, ``descoteaux07`` for the Descoteaux 2007 :footcite:p:`Descoteaux2007` basis, (``None`` defaults to ``descoteaux07``). full_basis: bool, optional If True, uses a SH basis containing even and odd order SH functions. Else, uses a SH basis consisting only of even order SH functions. legacy: bool, optional True to use a legacy basis definition for backward compatibility with previous ``tournier07`` and ``descoteaux07`` implementations. return_inv : bool, optional If True then the inverse of the matrix is also returned. smooth : float, optional Lambda-regularization in the SH fit. Returns ------- B : ndarray Matrix that transforms spherical harmonics to spherical function ``sf = np.dot(sh, B)``. invB : ndarray Inverse of B. References ---------- .. footbibliography:: """ sph_harm_basis = sph_harm_lookup.get(basis_type) if sph_harm_basis is None: raise ValueError("Invalid basis name.") B, m_values, l_values = sph_harm_basis( sh_order_max, sphere.theta, sphere.phi, full_basis=full_basis, legacy=legacy ) if return_inv: L = -l_values * (l_values + 1) invB = smooth_pinv(B, np.sqrt(smooth) * L) return B.T, invB.T return B.T
[docs] @warning_for_keywords() def calculate_max_order(n_coeffs, *, full_basis=False): r"""Calculate the maximal harmonic order (l), given that you know the number of parameters that were estimated. Parameters ---------- n_coeffs : int The number of SH coefficients full_basis: bool, optional True if the used SH basis contains even and odd order SH functions. False if the SH basis consists only of even order SH functions. Returns ------- L : int The maximal SH order (l), given the number of coefficients Notes ----- The calculation in this function for the symmetric SH basis proceeds according to the following logic: .. math:: n = \frac{1}{2} (L+1) (L+2) \rarrow 2n = L^2 + 3L + 2 \rarrow L^2 + 3L + 2 - 2n = 0 \rarrow L^2 + 3L + 2(1-n) = 0 \rarrow L_{1,2} = \frac{-3 \pm \sqrt{9 - 8 (1-n)}}{2} \rarrow L{1,2} = \frac{-3 \pm \sqrt{1 + 8n}}{2} Finally, the positive value is chosen between the two options. For a full SH basis, the calculation consists in solving the equation $n = (L + 1)^2$ for $L$, which gives $L = sqrt(n) - 1$. """ # L2 is negative for all positive values of n_coeffs, so we don't # bother even computing it: # L2 = (-3 - np.sqrt(1 + 8 * n_coeffs)) / 2 # L1 is always the larger value, so we go with that: if full_basis: L1 = np.sqrt(n_coeffs) - 1 if L1.is_integer(): return int(L1) else: L1 = (-3 + np.sqrt(1 + 8 * n_coeffs)) / 2.0 # Check that it is a whole even number: if L1.is_integer() and not np.mod(L1, 2): return int(L1) # Otherwise, the input didn't make sense: raise ValueError( f"The input to ``calculate_max_order`` was" f" {n_coeffs}, but that is not a valid number" f" of coefficients for a spherical harmonics" f" basis set." )
[docs] @warning_for_keywords() def anisotropic_power(sh_coeffs, *, norm_factor=0.00001, power=2, non_negative=True): r"""Calculate anisotropic power map with a given SH coefficient matrix. See :footcite:p:`DellAcqua2014` for further details about the method. Parameters ---------- sh_coeffs : ndarray A ndarray where the last dimension is the SH coefficients estimates for that voxel. norm_factor: float, optional The value to normalize the ap values. power : int, optional The degree to which power maps are calculated. non_negative: bool, optional Whether to rectify the resulting map to be non-negative. Returns ------- log_ap : ndarray The log of the resulting power image. Notes ----- Calculate AP image based on a IxJxKxC SH coefficient matrix based on the equation: .. math:: AP = \sum_{l=2,4,6,...}{\frac{1}{2l+1} \sum_{m=-l}^l{|a_{l,m}|^n}} Where the last dimension, C, is made of a flattened array of $l$x$m$ coefficients, where $l$ are the SH orders, and $m = 2l+1$, So l=1 has 1 coefficient, l=2 has 5, ... l=8 has 17 and so on. A l=2 SH coefficient matrix will then be composed of a IxJxKx6 volume. The power, $n$ is usually set to $n=2$. The final AP image is then shifted by -log(norm_factor), to be strictly non-negative. Remaining values < 0 are discarded (set to 0), per default, and this option is controlled through the `non_negative` keyword argument. References ---------- .. footbibliography:: """ dim = sh_coeffs.shape[:-1] n_coeffs = sh_coeffs.shape[-1] max_order = calculate_max_order(n_coeffs) ap = np.zeros(dim) n_start = 1 for L in range(2, max_order + 2, 2): n_stop = n_start + (2 * L + 1) ap_i = np.mean(np.abs(sh_coeffs[..., n_start:n_stop]) ** power, -1) ap += ap_i n_start = n_stop # Shift the map to be mostly non-negative, # only applying the log operation to positive elements # to avoid getting numpy warnings on log(0). # It is impossible to get ap values smaller than 0. # Also avoids getting voxels with -inf when non_negative=False. if ap.ndim < 1: # For the off chance we have a scalar on our hands ap = np.reshape(ap, (1,)) log_ap = np.zeros_like(ap) log_ap[ap > 0] = np.log(ap[ap > 0]) - np.log(norm_factor) # Deal with residual negative values: if non_negative: if isinstance(log_ap, np.ndarray): # zero all values < 0 log_ap[log_ap < 0] = 0 else: # assume this is a singleton float (input was 1D): if log_ap < 0: return 0 return log_ap
[docs] def convert_sh_to_full_basis(sh_coeffs): """Given an array of SH coeffs from a symmetric basis, returns the coefficients for the full SH basis by filling odd order SH coefficients with zeros Parameters ---------- sh_coeffs: ndarray A ndarray where the last dimension is the SH coefficients estimates for that voxel. Returns ------- full_sh_coeffs: ndarray A ndarray where the last dimension is the SH coefficients estimates for that voxel in a full SH basis. """ sh_order_max = calculate_max_order(sh_coeffs.shape[-1]) _, n = sph_harm_ind_list(sh_order_max, full_basis=True) full_sh_coeffs = np.zeros(np.append(sh_coeffs.shape[:-1], [n.size]).astype(int)) mask = np.mod(n, 2) == 0 full_sh_coeffs[..., mask] = sh_coeffs return full_sh_coeffs
[docs] @warning_for_keywords() def convert_sh_from_legacy(sh_coeffs, sh_basis, *, full_basis=False): """Convert SH coefficients in legacy SH basis to SH coefficients of the new SH basis for ``descoteaux07`` or ``tournier07`` bases. See :footcite:p:`Descoteaux2007` and :footcite:p:`Tournier2007`, :footcite:p:`Tournier2019` for the ``descoteaux07`` and ``tournier07`` bases, respectively. Parameters ---------- sh_coeffs: ndarray A ndarray where the last dimension is the SH coefficients estimates for that voxel. sh_basis: {'descoteaux07', 'tournier07'} ``tournier07`` for the Tournier 2007 :footcite:p:`Tournier2007`, :footcite:p:`Tournier2019` basis, ``descoteaux07`` for the Descoteaux 2007 :footcite:p:`Descoteaux2007` basis. full_basis: bool, optional True if the input SH basis includes both even and odd order SH functions, else False. Returns ------- out_sh_coeffs: ndarray The array of coefficients expressed in the new SH basis. References ---------- .. footbibliography:: """ sh_order_max = calculate_max_order(sh_coeffs.shape[-1], full_basis=full_basis) m_values, l_values = sph_harm_ind_list(sh_order_max, full_basis=full_basis) if sh_basis == "descoteaux07": out_sh_coeffs = sh_coeffs * np.where(m_values < 0, (-1.0) ** m_values, 1.0) elif sh_basis == "tournier07": out_sh_coeffs = sh_coeffs * np.where(m_values == 0, 1.0, 1.0 / np.sqrt(2)) else: raise ValueError("Invalid basis name.") return out_sh_coeffs
[docs] @warning_for_keywords() def convert_sh_to_legacy(sh_coeffs, sh_basis, *, full_basis=False): """Convert SH coefficients in new SH basis to SH coefficients for the legacy SH basis for ``descoteaux07`` or ``tournier07`` bases. See :footcite:p:`Descoteaux2007` and :footcite:p:`Tournier2007`, :footcite:p:`Tournier2019` for the ``descoteaux07`` and ``tournier07`` bases, respectively. Parameters ---------- sh_coeffs: ndarray A ndarray where the last dimension is the SH coefficients estimates for that voxel. sh_basis: {'descoteaux07', 'tournier07'} ``tournier07`` for the Tournier 2007 :footcite:p:`Tournier2007`, :footcite:p:`Tournier2019` basis, ``descoteaux07`` for the Descoteaux 2007 :footcite:p:`Descoteaux2007` basis. full_basis: bool, optional True if the input SH basis includes both even and odd order SH functions. Returns ------- out_sh_coeffs: ndarray The array of coefficients expressed in the legacy SH basis. References ---------- .. footbibliography:: """ sh_order_max = calculate_max_order(sh_coeffs.shape[-1], full_basis=full_basis) m_values, l_values = sph_harm_ind_list(sh_order_max, full_basis=full_basis) if sh_basis == "descoteaux07": out_sh_coeffs = sh_coeffs * np.where(m_values < 0, (-1.0) ** m_values, 1.0) elif sh_basis == "tournier07": out_sh_coeffs = sh_coeffs * np.where(m_values == 0, 1.0, np.sqrt(2)) else: raise ValueError("Invalid basis name.") return out_sh_coeffs
[docs] def convert_sh_descoteaux_tournier(sh_coeffs): """Convert SH coefficients between legacy-descoteaux07 and tournier07. Convert SH coefficients between the legacy ``descoteaux07`` SH basis and the non-legacy ``tournier07`` SH basis. Because this conversion is equal to its own inverse, it can be used to convert in either direction: legacy-descoteaux to non-legacy-tournier or non-legacy-tournier to legacy-descoteaux. This can be used to convert SH representations between DIPY and MRtrix3. See :footcite:p:`Descoteaux2007` and :footcite:p:`Tournier2019` for the origin of these SH bases. See [mrtrixbasis]_ for a description of the basis used in MRtrix3. See [mrtrixdipybases]_ for more details on the conversion. Parameters ---------- sh_coeffs: ndarray A ndarray where the last dimension is the SH coefficients estimates for that voxel. Returns ------- out_sh_coeffs: ndarray The array of coefficients expressed in the "other" SH basis. If the input was in the legacy-descoteaux basis then the output will be in the non-legacy-tournier basis, and vice versa. References ---------- .. footbibliography:: .. [mrtrixbasis] https://mrtrix.readthedocs.io/en/latest/concepts/spherical_harmonics.html .. [mrtrixdipybases] https://github.com/dipy/dipy/discussions/2959#discussioncomment-7481675 """ # noqa: E501 sh_order_max = calculate_max_order(sh_coeffs.shape[-1]) m_values, l_values = sph_harm_ind_list(sh_order_max) basis_indices = list(zip(l_values, m_values)) # dipy basis ordering basis_indices_permuted = list(zip(l_values, -m_values)) # mrtrix basis ordering permutation = [ basis_indices.index(basis_indices_permuted[i]) for i in range(len(basis_indices)) ] return sh_coeffs[..., permutation]