Source code for dipy.segment.mask

from warnings import warn

import numpy as np
from scipy.ndimage import binary_dilation, generate_binary_structure, median_filter

try:
    from skimage.filters import threshold_otsu as otsu
except Exception:
    from dipy.segment.threshold import otsu

from dipy.reconst.dti import color_fa, fractional_anisotropy
from dipy.segment.utils import remove_holes_and_islands
from dipy.testing.decorators import warning_for_keywords


[docs] def multi_median(data, median_radius, numpass): """Applies median filter multiple times on input data. Parameters ---------- data : ndarray The input volume to apply filter on. median_radius : int Radius (in voxels) of the applied median filter numpass: int Number of pass of the median filter Returns ------- data : ndarray Filtered input volume. """ # Array representing the size of the median window in each dimension. medarr = np.ones_like(data.shape) * ((median_radius * 2) + 1) if numpass > 1: # ensure the input array is not modified data = data.copy() # Multi pass output = np.empty_like(data) for _ in range(0, numpass): median_filter(data, medarr, output=output) data, output = output, data return data
[docs] def applymask(vol, mask): """Mask vol with mask. Parameters ---------- vol : ndarray Array with $V$ dimensions mask : ndarray Binary mask. Has $M$ dimensions where $M <= V$. When $M < V$, we append $V - M$ dimensions with axis length 1 to `mask` so that `mask` will broadcast against `vol`. In the typical case `vol` can be 4D, `mask` can be 3D, and we append a 1 to the mask shape which (via numpy broadcasting) has the effect of applying the 3D mask to each 3D slice in `vol` (``vol[..., 0]`` to ``vol[..., -1``). Returns ------- masked_vol : ndarray `vol` multiplied by `mask` where `mask` may have been extended to match extra dimensions in `vol` """ mask = mask.reshape(mask.shape + (vol.ndim - mask.ndim) * (1,)) return vol * mask
[docs] def bounding_box(vol): """Compute the bounding box of nonzero intensity voxels in the volume. Parameters ---------- vol : ndarray Volume to compute bounding box on. Returns ------- npmins : list Array containing minimum index of each dimension npmaxs : list Array containing maximum index of each dimension """ # Find bounds on first dimension temp = vol for _ in range(vol.ndim - 1): temp = temp.any(-1) mins = [temp.argmax()] maxs = [len(temp) - temp[::-1].argmax()] # Check that vol is not all 0 if mins[0] == 0 and temp[0] == 0: warn( "No data found in volume to bound. Returning empty bounding box.", stacklevel=2, ) return [0] * vol.ndim, [0] * vol.ndim # Find bounds on remaining dimensions if vol.ndim > 1: a, b = bounding_box(vol.any(0)) mins.extend(a) maxs.extend(b) return mins, maxs
[docs] def crop(vol, mins, maxs): """Crops the input volume. Parameters ---------- vol : ndarray Volume to crop. mins : array Array containing minimum index of each dimension. maxs : array Array containing maximum index of each dimension. Returns ------- vol : ndarray The cropped volume. """ return vol[tuple(slice(i, j) for i, j in zip(mins, maxs))]
[docs] @warning_for_keywords() def median_otsu( input_volume, *, vol_idx=None, median_radius=4, numpass=4, autocrop=False, dilate=None, finalize_mask=False, ): """Simple brain extraction tool method for images from DWI data. It uses a median filter smoothing of the input_volumes `vol_idx` and an automatic histogram Otsu thresholding technique, hence the name *median_otsu*. This function is inspired from Mrtrix's bet which has default values ``median_radius=3``, ``numpass=2``. However, from tests on multiple 1.5T and 3T data from GE, Philips, Siemens, the most robust choice is ``median_radius=4``, ``numpass=4``. Parameters ---------- input_volume : ndarray 3D or 4D array of the brain volume. vol_idx : None or array, optional 1D array representing indices of ``axis=3`` of a 4D `input_volume`. None is only an acceptable input if ``input_volume`` is 3D. median_radius : int, optional Radius (in voxels) of the applied median filter. numpass: int, optional Number of pass of the median filter. autocrop: bool, optional if True, the masked input_volume will also be cropped using the bounding box defined by the masked data. Should be on if DWI is upsampled to 1x1x1 resolution. dilate : None or int, optional number of iterations for binary dilation finalize_mask : bool, optional Whether to remove potential holes or islands. Useful for solving minor errors. Returns ------- maskedvolume : ndarray Masked input_volume mask : 3D ndarray The binary brain mask Notes ----- Copyright (C) 2011, the scikit-image team All rights reserved. Redistribution and use in source and binary forms, with or without modification, are permitted provided that the following conditions are met: 1. Redistributions of source code must retain the above copyright notice, this list of conditions and the following disclaimer. 2. Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the following disclaimer in the documentation and/or other materials provided with the distribution. 3. Neither the name of skimage nor the names of its contributors may be used to endorse or promote products derived from this software without specific prior written permission. THIS SOFTWARE IS PROVIDED BY THE AUTHOR "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. """ if len(input_volume.shape) == 4: if vol_idx is not None: b0vol = np.mean(input_volume[..., tuple(vol_idx)], axis=3) else: raise ValueError("For 4D images, must provide vol_idx input") else: b0vol = input_volume # Make a mask using a multiple pass median filter and histogram # thresholding. mask = multi_median(b0vol, median_radius, numpass) thresh = otsu(mask) mask = mask > thresh if dilate is not None: cross = generate_binary_structure(3, 1) mask = binary_dilation(mask, cross, iterations=dilate) # Correct mask by removing islands and holes if finalize_mask: mask = remove_holes_and_islands(mask) # Auto crop the volumes using the mask as input_volume for bounding box # computing. if autocrop: mins, maxs = bounding_box(mask) mask = crop(mask, mins, maxs) croppedvolume = crop(input_volume, mins, maxs) maskedvolume = applymask(croppedvolume, mask) else: maskedvolume = applymask(input_volume, mask) return maskedvolume, mask
[docs] @warning_for_keywords() def segment_from_cfa(tensor_fit, roi, threshold, *, return_cfa=False): """ Segment the cfa inside roi using the values from threshold as bounds. Parameters ---------- tensor_fit : TensorFit object TensorFit object roi : ndarray A binary mask, which contains the bounding box for the segmentation. threshold : array-like An iterable that defines the min and max values to use for the thresholding. The values are specified as (R_min, R_max, G_min, G_max, B_min, B_max) return_cfa : bool, optional If True, the cfa is also returned. Returns ------- mask : ndarray Binary mask of the segmentation. cfa : ndarray, optional Array with shape = (..., 3), where ... is the shape of tensor_fit. The color fractional anisotropy, ordered as a nd array with the last dimension of size 3 for the R, G and B channels. """ FA = fractional_anisotropy(tensor_fit.evals) FA[np.isnan(FA)] = 0 FA = np.clip(FA, 0, 1) # Clamp the FA to remove degenerate tensors cfa = color_fa(FA, tensor_fit.evecs) roi = np.asarray(roi, dtype=bool) include = (cfa >= threshold[0::2]) & (cfa <= threshold[1::2]) & roi[..., None] mask = np.all(include, axis=-1) if return_cfa: return mask, cfa return mask
[docs] def clean_cc_mask(mask): """ Cleans a segmentation of the corpus callosum so no random pixels are included. Parameters ---------- mask : ndarray Binary mask of the coarse segmentation. Returns ------- new_cc_mask : ndarray Binary mask of the cleaned segmentation. """ from scipy.ndimage import label new_cc_mask = np.zeros(mask.shape) # Flood fill algorithm to find contiguous regions. labels, numL = label(mask) volumes = [len(labels[np.where(labels == l_idx + 1)]) for l_idx in np.arange(numL)] biggest_vol = np.arange(numL)[np.where(volumes == np.max(volumes))] + 1 new_cc_mask[np.where(labels == biggest_vol)] = 1 return new_cc_mask