Source code for dipy.align.imwarp

"""Classes and functions for Symmetric Diffeomorphic Registration"""

import abc
import logging

import nibabel as nib
from nibabel.streamlines import ArraySequence as Streamlines
import numpy as np
import numpy.linalg as npl

from dipy.align import Bunch, VerbosityLevels, floating, vector_fields as vfu
from dipy.align.scalespace import ScaleSpace
from dipy.testing.decorators import warning_for_keywords

RegistrationStages = Bunch(
    INIT_START=0,
    INIT_END=1,
    OPT_START=2,
    OPT_END=3,
    SCALE_START=4,
    SCALE_END=5,
    ITER_START=6,
    ITER_END=7,
)
"""Registration Stages

This enum defines the different stages which the Volumetric Registration
may be in. The value of the stage is passed as a parameter to the call-back
function so that it can react accordingly.

INIT_START: optimizer initialization starts
INIT_END: optimizer initialization ends
OPT_START: optimization starts
OPT_END: optimization ends
SCALE_START: optimization at a new scale space resolution starts
SCALE_END: optimization at the current scale space resolution ends
ITER_START: a new iteration starts
ITER_END: the current iteration ends
"""

logger = logging.getLogger(__name__)


[docs] def mult_aff(A, B): """Returns the matrix product A.dot(B) considering None as the identity Parameters ---------- A : array, shape (n,k) B : array, shape (k,m) Returns ------- The matrix product A.dot(B). If any of the input matrices is None, it is treated as the identity matrix. If both matrices are None, None is returned """ if A is None: return B elif B is None: return A return A.dot(B)
[docs] def get_direction_and_spacings(affine, dim): """Extracts the rotational and spacing components from a matrix Extracts the rotational and spacing (voxel dimensions) components from a matrix. An image gradient represents the local variation of the image's gray values per voxel. Since we are iterating on the physical space, we need to compute the gradients as variation per millimeter, so we need to divide each gradient's component by the voxel size along the corresponding axis, that's what the spacings are used for. Since the image's gradients are oriented along the grid axes, we also need to re-orient the gradients to be given in physical space coordinates. Parameters ---------- affine : array, shape (k, k), k = 3, 4 the matrix transforming grid coordinates to physical space. Returns ------- direction : array, shape (k-1, k-1) the rotational component of the input matrix spacings : array, shape (k-1,) the scaling component (voxel size) of the matrix """ if affine is None: return np.eye(dim), np.ones(dim) dim = affine.shape[1] - 1 # Temporary hack: get the zooms by building a nifti image affine4x4 = np.eye(4) empty_volume = np.zeros((0, 0, 0)) affine4x4[:dim, :dim] = affine[:dim, :dim] affine4x4[:dim, 3] = affine[:dim, dim - 1] nib_nifti = nib.Nifti1Image(empty_volume, affine4x4) scalings = np.asarray(nib_nifti.header.get_zooms()) scalings = np.asarray(scalings[:dim], dtype=np.float64) A = affine[:dim, :dim] return A.dot(np.diag(1.0 / scalings)), scalings
[docs] class DiffeomorphicMap: @warning_for_keywords() def __init__( self, dim, disp_shape, *, disp_grid2world=None, domain_shape=None, domain_grid2world=None, codomain_shape=None, codomain_grid2world=None, prealign=None, ): """DiffeomorphicMap Implements a diffeomorphic transformation on the physical space. The deformation fields encoding the direct and inverse transformations share the same domain discretization (both the discretization grid shape and voxel-to-space matrix). The input coordinates (physical coordinates) are first aligned using prealign, and then displaced using the corresponding vector field interpolated at the aligned coordinates. Parameters ---------- dim : int, 2 or 3 the transformation's dimension disp_shape : array, shape (dim,) the number of slices (if 3D), rows and columns of the deformation field's discretization disp_grid2world : the voxel-to-space transform between the def. fields grid and space domain_shape : array, shape (dim,) the number of slices (if 3D), rows and columns of the default discretization of this map's domain domain_grid2world : array, shape (dim+1, dim+1) the default voxel-to-space transformation between this map's discretization and physical space codomain_shape : array, shape (dim,) the number of slices (if 3D), rows and columns of the images that are 'normally' warped using this transformation in the forward direction (this will provide default transformation parameters to warp images under this transformation). By default, we assume that the inverse transformation is 'normally' used to warp images with the same discretization and voxel-to-space transformation as the deformation field grid. codomain_grid2world : array, shape (dim+1, dim+1) the voxel-to-space transformation of images that are 'normally' warped using this transformation (in the forward direction). prealign : array, shape (dim+1, dim+1) the linear transformation to be applied to align input images to the reference space before warping under the deformation field. """ self.dim = dim if disp_shape is None: raise ValueError("Invalid displacement field discretization") self.disp_shape = np.asarray(disp_shape, dtype=np.int32) # If the discretization affine is None, we assume it's the identity self.disp_grid2world = disp_grid2world if self.disp_grid2world is None: self.disp_world2grid = None else: self.disp_world2grid = npl.inv(self.disp_grid2world) # If domain_shape isn't provided, we use the map's discretization shape if domain_shape is None: self.domain_shape = self.disp_shape else: self.domain_shape = np.asarray(domain_shape, dtype=np.int32) self.domain_grid2world = domain_grid2world if domain_grid2world is None: self.domain_world2grid = None else: self.domain_world2grid = npl.inv(domain_grid2world) # If codomain shape was not provided, we assume it is an endomorphism: # use the same domain_shape and codomain_grid2world as the field domain if codomain_shape is None: self.codomain_shape = self.domain_shape else: self.codomain_shape = np.asarray(codomain_shape, dtype=np.int32) self.codomain_grid2world = codomain_grid2world if codomain_grid2world is None: self.codomain_world2grid = None else: self.codomain_world2grid = npl.inv(codomain_grid2world) self.prealign = prealign if prealign is None: self.prealign_inv = None else: self.prealign_inv = npl.inv(prealign) self.is_inverse = False self.forward = None self.backward = None
[docs] def interpret_matrix(self, obj): """Try to interpret `obj` as a matrix Some operations are performed faster if we know in advance if a matrix is the identity (so we can skip the actual matrix-vector multiplication). This function returns None if the given object is None or the 'identity' string. It returns the same object if it is a numpy array. It raises an exception otherwise. Parameters ---------- obj : object any object Returns ------- obj : object the same object given as argument if `obj` is None or a numpy array. None if `obj` is the 'identity' string. """ if (obj is None) or isinstance(obj, np.ndarray): return obj if isinstance(obj, str) and (obj == "identity"): return None raise ValueError("Invalid matrix")
[docs] def get_forward_field(self): """Deformation field to transform an image in the forward direction Returns the deformation field that must be used to warp an image under this transformation in the forward direction (note the 'is_inverse' flag). """ if self.is_inverse: return self.backward else: return self.forward
[docs] def get_backward_field(self): """Deformation field to transform an image in the backward direction Returns the deformation field that must be used to warp an image under this transformation in the backward direction (note the 'is_inverse' flag). """ if self.is_inverse: return self.forward else: return self.backward
[docs] def allocate(self): """Creates a zero displacement field Creates a zero displacement field (the identity transformation). """ self.forward = np.zeros(tuple(self.disp_shape) + (self.dim,), dtype=floating) self.backward = np.zeros(tuple(self.disp_shape) + (self.dim,), dtype=floating)
@warning_for_keywords() def _get_warping_function(self, interpolation, *, warp_coordinates=False): r"""Appropriate warping function for the given interpolation type Returns the right warping function from vector_fields that must be called for the specified data dimension and interpolation type Parameters ---------- interpolation : string, either 'linear' or 'nearest' specifies the type of interpolation used for image warping. It does not have any effect if `warp_coordinates` is True, in which case no interpolation is intended to be performed. warp_coordinates : Boolean, if False, then returns the right image warping function for this DiffeomorphicMap dimension and the specified `interpolation`. If True, then returns the right coordinate warping function. """ if self.dim == 2: if warp_coordinates: return vfu.warp_coordinates_2d if interpolation == "linear": return vfu.warp_2d else: return vfu.warp_2d_nn else: if warp_coordinates: return vfu.warp_coordinates_3d if interpolation == "linear": return vfu.warp_3d else: return vfu.warp_3d_nn @warning_for_keywords() def _warp_coordinates_forward(self, points, *, coord2world=None, world2coord=None): r"""Warps the list of points in the forward direction Applies this diffeomorphic map to the list of points given by `points`. We assume that the points' coordinates are mapped to world coordinates by applying the `coord2world` affine transform. The warped coordinates are given in world coordinates unless `world2coord` affine transform is specified, in which case the warped points will be transformed to the corresponding coordinate system. Parameters ---------- points : coord2world : world2coord : """ warp_f = self._get_warping_function(None, warp_coordinates=True) coord2prealigned = mult_aff(self.prealign, coord2world) out = warp_f( points, self.forward, coord2prealigned, world2coord, self.disp_world2grid ) return out @warning_for_keywords() def _warp_coordinates_backward(self, points, *, coord2world=None, world2coord=None): """Warps the list of points in the backward direction Applies this diffeomorphic map to the list of points given by `points`. We assume that the points' coordinates are mapped to world coordinates by applying the `coord2world` affine transform. The warped coordinates are given in world coordinates unless `world2coord` affine transform is specified, in which case the warped points will be transformed to the corresponding coordinate system. Parameters ---------- points : coord2world : world2coord : """ warp_f = self._get_warping_function(None, warp_coordinates=True) world2invprealigned = mult_aff(world2coord, self.prealign_inv) out = warp_f( points, self.backward, coord2world, world2invprealigned, self.disp_world2grid, ) return out @warning_for_keywords() def _warp_forward( self, image, *, interpolation="linear", image_world2grid=None, out_shape=None, out_grid2world=None, ): """Warps an image in the forward direction Deforms the input image under this diffeomorphic map in the forward direction. Since the mapping is defined in the physical space, the user must specify the sampling grid shape and its space-to-voxel mapping. By default, the transformation will use the discretization information given at initialization. Parameters ---------- image : array, shape (s, r, c) if dim = 3 or (r, c) if dim = 2 the image to be warped under this transformation in the forward direction interpolation : string, either 'linear' or 'nearest' the type of interpolation to be used for warping, either 'linear' (for k-linear interpolation) or 'nearest' for nearest neighbor image_world2grid : array, shape (dim+1, dim+1) the transformation bringing world (space) coordinates to voxel coordinates of the image given as input out_shape : array, shape (dim,) the number of slices, rows, and columns of the desired warped image out_grid2world : the transformation bringing voxel coordinates of the warped image to physical space Returns ------- warped : array, shape = out_shape or self.codomain_shape if None the warped image under this transformation in the forward direction Notes ----- A diffeomorphic map must be thought as a mapping between points in space. Warping an image J towards an image I means transforming each voxel with (discrete) coordinates i in I to (floating-point) voxel coordinates j in J. The transformation we consider 'forward' is precisely mapping coordinates i from the input image to coordinates j from reference image, which has the effect of warping an image with reference discretization (typically, the "static image") "towards" an image with input discretization (typically, the "moving image"). More precisely, the warped image is produced by the following interpolation: warped[i] = image[W * forward[Dinv * P * S * i] + W * P * S * i )] where i denotes the coordinates of a voxel in the input grid, W is the world-to-grid transformation of the image given as input, Dinv is the world-to-grid transformation of the deformation field discretization, P is the pre-aligning matrix (transforming input points to reference points), S is the voxel-to-space transformation of the sampling grid (see comment below) and forward is the forward deformation field. If we want to warp an image, we also must specify on what grid we want to sample the resulting warped image (the images are considered as points in space and its representation on a grid depends on its grid-to-space transform telling us for each grid voxel what point in space we need to bring via interpolation). So, S is the matrix that converts the sampling grid (whose shape is given as parameter 'out_shape' ) to space coordinates. """ # if no world-to-image transform is provided, we use the codomain info if image_world2grid is None: image_world2grid = self.codomain_world2grid # if no sampling info is provided, we use the domain info if out_shape is None: if self.domain_shape is None: raise ValueError( "Unable to infer sampling info. Provide a valid out_shape." ) out_shape = self.domain_shape else: out_shape = np.asarray(out_shape, dtype=np.int32) if out_grid2world is None: out_grid2world = self.domain_grid2world W = self.interpret_matrix(image_world2grid) Dinv = self.disp_world2grid P = self.prealign S = self.interpret_matrix(out_grid2world) # this is the matrix which we need to multiply the voxel coordinates # to interpolate on the forward displacement field ("in"side the # 'forward' brackets in the expression above) affine_idx_in = mult_aff(Dinv, mult_aff(P, S)) # this is the matrix which we need to multiply the voxel coordinates # to add to the displacement ("out"side the 'forward' brackets in the # expression above) affine_idx_out = mult_aff(W, mult_aff(P, S)) # this is the matrix which we need to multiply the displacement vector # prior to adding to the transformed input point affine_disp = W # Convert the data to required types to use the cythonized functions if interpolation == "nearest": if image.dtype is np.dtype("float64") and floating is np.float32: image = image.astype(floating) elif image.dtype is np.dtype("int64"): image = image.astype(np.int32) else: image = np.asarray(image, dtype=floating) warp_f = self._get_warping_function(interpolation) warped = warp_f( image, self.forward, affine_idx_in=affine_idx_in, affine_idx_out=affine_idx_out, affine_disp=affine_disp, out_shape=out_shape, ) return warped @warning_for_keywords() def _warp_backward( self, image, *, interpolation="linear", image_world2grid=None, out_shape=None, out_grid2world=None, ): """Warps an image in the backward direction Deforms the input image under this diffeomorphic map in the backward direction. Since the mapping is defined in the physical space, the user must specify the sampling grid shape and its space-to-voxel mapping. By default, the transformation will use the discretization information given at initialization. Parameters ---------- image : array, shape (s, r, c) if dim = 3 or (r, c) if dim = 2 the image to be warped under this transformation in the backward direction interpolation : string, either 'linear' or 'nearest' the type of interpolation to be used for warping, either 'linear' (for k-linear interpolation) or 'nearest' for nearest neighbor image_world2grid : array, shape (dim+1, dim+1) the transformation bringing world (space) coordinates to voxel coordinates of the image given as input out_shape : array, shape (dim,) the number of slices, rows and columns of the desired warped image out_grid2world : the transformation bringing voxel coordinates of the warped image to physical space Returns ------- warped : array, shape = out_shape or self.domain_shape if None the warped image under this transformation in the backward direction Notes ----- A diffeomorphic map must be thought as a mapping between points in space. Warping an image J towards an image I means transforming each voxel with (discrete) coordinates i in I to (floating-point) voxel coordinates j in J. The transformation we consider 'backward' is precisely mapping coordinates i from the reference grid to coordinates j from the input image (that's why it's "backward"), which has the effect of warping the input image (moving) "towards" the reference. More precisely, the warped image is produced by the following interpolation: warped[i]=image[W * Pinv * backward[Dinv * S * i] + W * Pinv * S * i )] where i denotes the coordinates of a voxel in the input grid, W is the world-to-grid transformation of the image given as input, Dinv is the world-to-grid transformation of the deformation field discretization, Pinv is the pre-aligning matrix's inverse (transforming reference points to input points), S is the grid-to-space transformation of the sampling grid (see comment below) and backward is the backward deformation field. If we want to warp an image, we also must specify on what grid we want to sample the resulting warped image (the images are considered as points in space and its representation on a grid depends on its grid-to-space transform telling us for each grid voxel what point in space we need to bring via interpolation). So, S is the matrix that converts the sampling grid (whose shape is given as parameter 'out_shape' ) to space coordinates. """ # if no world-to-image transform is provided, we use the domain info if image_world2grid is None: image_world2grid = self.domain_world2grid # if no sampling info is provided, we use the codomain info if out_shape is None: if self.codomain_shape is None: msg = "Unknown sampling info. Provide a valid out_shape." raise ValueError(msg) out_shape = self.codomain_shape if out_grid2world is None: out_grid2world = self.codomain_grid2world W = self.interpret_matrix(image_world2grid) Dinv = self.disp_world2grid Pinv = self.prealign_inv S = self.interpret_matrix(out_grid2world) # this is the matrix which we need to multiply the voxel coordinates # to interpolate on the backward displacement field ("in"side the # 'backward' brackets in the expression above) affine_idx_in = mult_aff(Dinv, S) # this is the matrix which we need to multiply the voxel coordinates # to add to the displacement ("out"side the 'backward' brackets in the # expression above) affine_idx_out = mult_aff(W, mult_aff(Pinv, S)) # this is the matrix which we need to multiply the displacement vector # prior to adding to the transformed input point affine_disp = mult_aff(W, Pinv) if interpolation == "nearest": if image.dtype is np.dtype("float64") and floating is np.float32: image = image.astype(floating) elif image.dtype is np.dtype("int64"): image = image.astype(np.int32) else: image = np.asarray(image, dtype=floating) warp_f = self._get_warping_function(interpolation) warped = warp_f( image, self.backward, affine_idx_in=affine_idx_in, affine_idx_out=affine_idx_out, affine_disp=affine_disp, out_shape=out_shape, ) return warped
[docs] @warning_for_keywords() def transform( self, image, *, interpolation="linear", image_world2grid=None, out_shape=None, out_grid2world=None, ): """Warps an image in the forward direction Transforms the input image under this transformation in the forward direction. It uses the "is_inverse" flag to switch between "forward" and "backward" (if is_inverse is False, then transform(...) warps the image forwards, else it warps the image backwards). Parameters ---------- image : array, shape (s, r, c) if dim = 3 or (r, c) if dim = 2 the image to be warped under this transformation in the forward direction interpolation : string, either 'linear' or 'nearest' the type of interpolation to be used for warping, either 'linear' (for k-linear interpolation) or 'nearest' for nearest neighbor image_world2grid : array, shape (dim+1, dim+1) the transformation bringing world (space) coordinates to voxel coordinates of the image given as input out_shape : array, shape (dim,) the number of slices, rows and columns of the desired warped image out_grid2world : the transformation bringing voxel coordinates of the warped image to physical space Returns ------- warped : array, shape = out_shape or self.codomain_shape if None the warped image under this transformation in the forward direction Notes ----- See _warp_forward and _warp_backward documentation for further information. """ if out_shape is not None: out_shape = np.asarray(out_shape, dtype=np.int32) if self.is_inverse: warped = self._warp_backward( image, interpolation=interpolation, image_world2grid=image_world2grid, out_shape=out_shape, out_grid2world=out_grid2world, ) else: warped = self._warp_forward( image, interpolation=interpolation, image_world2grid=image_world2grid, out_shape=out_shape, out_grid2world=out_grid2world, ) return np.asarray(warped)
[docs] @warning_for_keywords() def transform_inverse( self, image, *, interpolation="linear", image_world2grid=None, out_shape=None, out_grid2world=None, ): """Warps an image in the backward direction Transforms the input image under this transformation in the backward direction. It uses the "is_inverse" flag to switch between "forward" and "backward" (if is_inverse is False, then transform_inverse(...) warps the image backwards, else it warps the image forwards) Parameters ---------- image : array, shape (s, r, c) if dim = 3 or (r, c) if dim = 2 the image to be warped under this transformation in the forward direction interpolation : string, either 'linear' or 'nearest' the type of interpolation to be used for warping, either 'linear' (for k-linear interpolation) or 'nearest' for nearest neighbor image_world2grid : array, shape (dim+1, dim+1) the transformation bringing world (space) coordinates to voxel coordinates of the image given as input out_shape : array, shape (dim,) the number of slices, rows, and columns of the desired warped image out_grid2world : the transformation bringing voxel coordinates of the warped image to physical space Returns ------- warped : array, shape = out_shape or self.codomain_shape if None warped image under this transformation in the backward direction Notes ----- See _warp_forward and _warp_backward documentation for further information. """ if self.is_inverse: warped = self._warp_forward( image, interpolation=interpolation, image_world2grid=image_world2grid, out_shape=out_shape, out_grid2world=out_grid2world, ) else: warped = self._warp_backward( image, interpolation=interpolation, image_world2grid=image_world2grid, out_shape=out_shape, out_grid2world=out_grid2world, ) return np.asarray(warped)
[docs] @warning_for_keywords() def transform_points(self, points, *, coord2world=None, world2coord=None): """Warp the list of points in the forward direction. Applies this diffeomorphic map to the list of points (or streamlines) given by `points`. We assume that the points' coordinates are mapped to world coordinates by applying the `coord2world` affine transform. The warped coordinates are given in world coordinates unless `world2coord` affine transform is specified, in which case the warped points will be transformed to the corresponding coordinate system. Parameters ---------- points : array, shape (N, dim) or Streamlines object coord2world : array, shape (dim+1, dim+1), optional affine matrix mapping points to world coordinates world2coord : array, shape (dim+1, dim+1), optional affine matrix mapping world coordinates to points """ return self._transform_coordinates( points, coord2world, world2coord, inverse=self.is_inverse )
[docs] @warning_for_keywords() def transform_points_inverse(self, points, *, coord2world=None, world2coord=None): """Warp the list of points in the backward direction. Applies this diffeomorphic map to the list of points (or streamlines) given by `points`. We assume that the points' coordinates are mapped to world coordinates by applying the `coord2world` affine transform. The warped coordinates are given in world coordinates unless `world2coord` affine transform is specified, in which case the warped points will be transformed to the corresponding coordinate system. Parameters ---------- points : array, shape (N, dim) or Streamlines object coord2world : array, shape (dim+1, dim+1), optional affine matrix mapping points to world coordinates world2coord : array, shape (dim+1, dim+1), optional affine matrix mapping world coordinates to points """ return self._transform_coordinates( points, coord2world, world2coord, inverse=not self.is_inverse )
@warning_for_keywords() def _transform_coordinates( self, points, coord2world, world2coord, *, inverse=False ): is_streamline_obj = isinstance(points, Streamlines) data = points.get_data() if is_streamline_obj else points if inverse: out = self._warp_coordinates_backward( data, coord2world=coord2world, world2coord=world2coord ) else: out = self._warp_coordinates_forward( data, coord2world=coord2world, world2coord=world2coord ) if is_streamline_obj: old_data_dtype = points._data.dtype old_offsets_dtype = points._offsets.dtype streamlines = points.copy() streamlines._offsets = points._offsets.astype(old_offsets_dtype) streamlines._data = out.astype(old_data_dtype) return streamlines return out
[docs] def inverse(self): """Inverse of this DiffeomorphicMap instance Returns a diffeomorphic map object representing the inverse of this transformation. The internal arrays are not copied but just referenced. Returns ------- inv : DiffeomorphicMap object the inverse of this diffeomorphic map. """ inv = DiffeomorphicMap( dim=self.dim, disp_shape=self.disp_shape, disp_grid2world=self.disp_grid2world, domain_shape=self.domain_shape, domain_grid2world=self.domain_grid2world, codomain_shape=self.codomain_shape, codomain_grid2world=self.codomain_grid2world, prealign=self.prealign, ) inv.forward = self.forward inv.backward = self.backward inv.is_inverse = True return inv
[docs] def expand_fields(self, expand_factors, new_shape): """Expands the displacement fields from current shape to new_shape Up-samples the discretization of the displacement fields to be of new_shape shape. Parameters ---------- expand_factors : array, shape (dim,) the factors scaling current spacings (voxel sizes) to spacings in the expanded discretization. new_shape : array, shape (dim,) the shape of the arrays holding the up-sampled discretization """ if self.dim == 2: expand_f = vfu.resample_displacement_field_2d else: expand_f = vfu.resample_displacement_field_3d expanded_forward = expand_f(self.forward, expand_factors, new_shape) expanded_backward = expand_f(self.backward, expand_factors, new_shape) expand_factors = np.append(expand_factors, [1]) expanded_grid2world = mult_aff(self.disp_grid2world, np.diag(expand_factors)) expanded_world2grid = npl.inv(expanded_grid2world) self.forward = expanded_forward self.backward = expanded_backward self.disp_shape = new_shape self.disp_grid2world = expanded_grid2world self.disp_world2grid = expanded_world2grid
[docs] def compute_inversion_error(self): """Inversion error of the displacement fields Estimates the inversion error of the displacement fields by computing statistics of the residual vectors obtained after composing the forward and backward displacement fields. Returns ------- residual : array, shape (R, C) or (S, R, C) the displacement field resulting from composing the forward and backward displacement fields of this transformation (the residual should be zero for a perfect diffeomorphism) stats : array, shape (3,) statistics from the norms of the vectors of the residual displacement field: maximum, mean and standard deviation Notes ----- Since the forward and backward displacement fields have the same discretization, the final composition is given by comp[i] = forward[ i + Dinv * backward[i]] where Dinv is the space-to-grid transformation of the displacement fields """ Dinv = self.disp_world2grid if self.dim == 2: compose_f = vfu.compose_vector_fields_2d else: compose_f = vfu.compose_vector_fields_3d residual, stats = compose_f(self.backward, self.forward, None, Dinv, 1.0, None) return np.asarray(residual), np.asarray(stats)
[docs] def shallow_copy(self): """Shallow copy of this DiffeomorphicMap instance Creates a shallow copy of this diffeomorphic map (the arrays are not copied but just referenced) Returns ------- new_map : DiffeomorphicMap object the shallow copy of this diffeomorphic map """ new_map = DiffeomorphicMap( dim=self.dim, disp_shape=self.disp_shape, disp_grid2world=self.disp_grid2world, domain_shape=self.domain_shape, domain_grid2world=self.domain_grid2world, codomain_shape=self.codomain_shape, codomain_grid2world=self.codomain_grid2world, prealign=self.prealign, ) new_map.forward = self.forward new_map.backward = self.backward new_map.is_inverse = self.is_inverse return new_map
[docs] def warp_endomorphism(self, phi): """Composition of this DiffeomorphicMap with a given endomorphism Creates a new DiffeomorphicMap C with the same properties as self and composes its displacement fields with phi's corresponding fields. The resulting diffeomorphism is of the form C(x) = phi(self(x)) with inverse C^{-1}(y) = self^{-1}(phi^{-1}(y)). We assume that phi is an endomorphism with the same discretization and domain affine as self to ensure that the composition inherits self's properties (we also assume that the pre-aligning matrix of phi is None or identity). Parameters ---------- phi : DiffeomorphicMap object the endomorphism to be warped by this diffeomorphic map Returns ------- composition : the composition of this diffeomorphic map with the endomorphism given as input Notes ----- The problem with our current representation of a DiffeomorphicMap is that the set of Diffeomorphism that can be represented this way (a pre-aligning matrix followed by a non-linear endomorphism given as a displacement field) is not closed under the composition operation. Supporting a general DiffeomorphicMap class, closed under composition, may be extremely costly computationally, and the kind of transformations we actually need for Avants' mid-point algorithm (SyN) are much simpler. """ # Compose the forward deformation fields d1 = self.get_forward_field() d2 = phi.get_forward_field() d1_inv = self.get_backward_field() d2_inv = phi.get_backward_field() premult_disp = self.disp_world2grid if self.dim == 2: compose_f = vfu.compose_vector_fields_2d else: compose_f = vfu.compose_vector_fields_3d forward, stats = compose_f(d1, d2, None, premult_disp, 1.0, None) ( backward, stats, ) = compose_f(d2_inv, d1_inv, None, premult_disp, 1.0, None) composition = self.shallow_copy() composition.forward = forward composition.backward = backward return composition
[docs] def get_simplified_transform(self): """Constructs a simplified version of this Diffeomorhic Map The simplified version incorporates the pre-align transform, as well as the domain and codomain affine transforms into the displacement field. The resulting transformation may be regarded as operating on the image spaces given by the domain and codomain discretization. As a result, self.prealign, self.disp_grid2world, self.domain_grid2world and self.codomain affine will be None (denoting Identity) in the resulting diffeomorphic map. """ if self.dim == 2: simplify_f = vfu.simplify_warp_function_2d else: simplify_f = vfu.simplify_warp_function_3d # Simplify the forward transform D = self.domain_grid2world P = self.prealign Rinv = self.disp_world2grid Cinv = self.codomain_world2grid # this is the matrix which we need to multiply the voxel coordinates # to interpolate on the forward displacement field ("in"side the # 'forward' brackets in the expression above) affine_idx_in = mult_aff(Rinv, mult_aff(P, D)) # this is the matrix which we need to multiply the voxel coordinates # to add to the displacement ("out"side the 'forward' brackets in the # expression above) affine_idx_out = mult_aff(Cinv, mult_aff(P, D)) # this is the matrix which we need to multiply the displacement vector # prior to adding to the transformed input point affine_disp = Cinv new_forward = simplify_f( self.forward, affine_idx_in, affine_idx_out, affine_disp, self.domain_shape ) # Simplify the backward transform C = self.codomain_world2grid Pinv = self.prealign_inv Dinv = self.domain_world2grid affine_idx_in = mult_aff(Rinv, C) affine_idx_out = mult_aff(Dinv, mult_aff(Pinv, C)) affine_disp = mult_aff(Dinv, Pinv) new_backward = simplify_f( self.backward, affine_idx_in, affine_idx_out, affine_disp, self.codomain_shape, ) simplified = DiffeomorphicMap( dim=self.dim, disp_shape=self.disp_shape, disp_grid2world=None, domain_shape=self.domain_shape, domain_grid2world=None, codomain_shape=self.codomain_shape, codomain_grid2world=None, prealign=None, ) simplified.forward = new_forward simplified.backward = new_backward return simplified
[docs] class DiffeomorphicRegistration(metaclass=abc.ABCMeta): @warning_for_keywords() def __init__(self, *, metric=None): """Diffeomorphic Registration This abstract class defines the interface to be implemented by any optimization algorithm for diffeomorphic registration. Parameters ---------- metric : SimilarityMetric object the object measuring the similarity of the two images. The registration algorithm will minimize (or maximize) the provided similarity. """ if metric is None: raise ValueError("The metric cannot be None") self.metric = metric self.dim = metric.dim
[docs] def set_level_iters(self, level_iters): """Sets the number of iterations at each pyramid level Establishes the maximum number of iterations to be performed at each level of the Gaussian pyramid, similar to ANTS. Parameters ---------- level_iters : list the number of iterations at each level of the Gaussian pyramid. level_iters[0] corresponds to the finest level, level_iters[n-1] the coarsest, where n is the length of the list """ self.levels = len(level_iters) if level_iters else 0 self.level_iters = level_iters
[docs] @abc.abstractmethod def optimize(self): """Starts the metric optimization This is the main function each specialized class derived from this must implement. Upon completion, the deformation field must be available from the forward transformation model. """
[docs] @abc.abstractmethod def get_map(self): """ Returns the resulting diffeomorphic map after optimization """
[docs] class SymmetricDiffeomorphicRegistration(DiffeomorphicRegistration): @warning_for_keywords() def __init__( self, metric, *, level_iters=None, step_length=0.25, ss_sigma_factor=0.2, opt_tol=1e-5, inv_iter=20, inv_tol=1e-3, callback=None, ): """Symmetric Diffeomorphic Registration (SyN) Algorithm Performs the multi-resolution optimization algorithm for non-linear registration using a given similarity metric. Parameters ---------- metric : SimilarityMetric object the metric to be optimized level_iters : list of int the number of iterations at each level of the Gaussian Pyramid (the length of the list defines the number of pyramid levels to be used) opt_tol : float the optimization will stop when the estimated derivative of the energy profile w.r.t. time falls below this threshold inv_iter : int the number of iterations to be performed by the displacement field inversion algorithm step_length : float the length of the maximum displacement vector of the update displacement field at each iteration ss_sigma_factor : float parameter of the scale-space smoothing kernel. For example, the std. dev. of the kernel will be factor*(2^i) in the isotropic case where i = 0, 1, ..., n_scales is the scale inv_tol : float the displacement field inversion algorithm will stop iterating when the inversion error falls below this threshold callback : function(SymmetricDiffeomorphicRegistration) a function receiving a SymmetricDiffeomorphicRegistration object to be called after each iteration (this optimizer will call this function passing self as parameter) """ super(SymmetricDiffeomorphicRegistration, self).__init__(metric=metric) if level_iters is None: level_iters = [100, 100, 25] if len(level_iters) == 0: raise ValueError("The iterations list cannot be empty") self.set_level_iters(level_iters) self.step_length = step_length self.ss_sigma_factor = ss_sigma_factor self.opt_tol = opt_tol self.inv_tol = inv_tol self.inv_iter = inv_iter self.energy_window = 12 self.energy_list = [] self.full_energy_profile = [] self.verbosity = VerbosityLevels.STATUS self.callback = callback self.moving_ss = None self.static_ss = None self.static_direction = None self.moving_direction = None self.mask0 = metric.mask0
[docs] def update( self, current_displacement, new_displacement, disp_world2grid, time_scaling ): """Composition of the current displacement field with the given field Interpolates new displacement at the locations defined by current_displacement. Equivalently, computes the composition C of the given displacement fields as C(x) = B(A(x)), where A is current_displacement and B is new_displacement. This function is intended to be used with deformation fields of the same sampling (e.g. to be called by a registration algorithm). Parameters ---------- current_displacement : array, shape (R', C', 2) or (S', R', C', 3) the displacement field defining where to interpolate new_displacement new_displacement : array, shape (R, C, 2) or (S, R, C, 3) the displacement field to be warped by current_displacement disp_world2grid : array, shape (dim+1, dim+1) the space-to-grid transform associated with the displacements' grid (we assume that both displacements are discretized over the same grid) time_scaling : float scaling factor applied to d2. The effect may be interpreted as moving d1 displacements along a factor (`time_scaling`) of d2. Returns ------- updated : array, shape (the same as new_displacement) the warped displacement field mean_norm : the mean norm of all vectors in current_displacement """ sq_field = np.sum((np.array(current_displacement) ** 2), -1) mean_norm = np.sqrt(sq_field).mean() # We assume that both displacement fields have the same # grid2world transform, which implies premult_index=Identity # and premult_disp is the world2grid transform associated with # the displacements' grid self.compose( current_displacement, new_displacement, None, disp_world2grid, time_scaling, current_displacement, ) return np.array(current_displacement), np.array(mean_norm)
[docs] def get_map(self): """Return the resulting diffeomorphic map. Returns the DiffeomorphicMap registering the moving image towards the static image. """ if not hasattr(self, "static_to_ref"): msg = "Diffeormorphic map can not be obtained without running " msg += "the optimizer. Please call first " msg += "SymmetricDiffeomorphicRegistration.optimize()" raise ValueError(msg) return self.static_to_ref
def _connect_functions(self): """Assign the methods to be called according to the image dimension Assigns the appropriate functions to be called for displacement field inversion, Gaussian pyramid, and affine / dense deformation composition according to the dimension of the input images e.g. 2D or 3D. """ if self.dim == 2: self.invert_vector_field = vfu.invert_vector_field_fixed_point_2d self.compose = vfu.compose_vector_fields_2d else: self.invert_vector_field = vfu.invert_vector_field_fixed_point_3d self.compose = vfu.compose_vector_fields_3d def _init_optimizer( self, static, moving, static_grid2world, moving_grid2world, prealign ): """Initializes the registration optimizer Initializes the optimizer by computing the scale space of the input images and allocating the required memory for the transformation models at the coarsest scale. Parameters ---------- static : array, shape (S, R, C) or (R, C) the image to be used as reference during optimization. The displacement fields will have the same discretization as the static image. moving : array, shape (S, R, C) or (R, C) the image to be used as "moving" during optimization. Since the deformation fields' discretization is the same as the static image, it is necessary to pre-align the moving image to ensure its domain lies inside the domain of the deformation fields. This is assumed to be accomplished by "pre-aligning" the moving image towards the static using an affine transformation given by the 'prealign' matrix static_grid2world : array, shape (dim+1, dim+1) the voxel-to-space transformation associated to the static image moving_grid2world : array, shape (dim+1, dim+1) the voxel-to-space transformation associated to the moving image prealign : array, shape (dim+1, dim+1) the affine transformation (operating on the physical space) pre-aligning the moving image towards the static """ self._connect_functions() # Extract information from affine matrices to create the scale space static_direction, static_spacing = get_direction_and_spacings( static_grid2world, self.dim ) moving_direction, moving_spacing = get_direction_and_spacings( moving_grid2world, self.dim ) # the images' directions don't change with scale self.static_direction = np.eye(self.dim + 1) self.moving_direction = np.eye(self.dim + 1) self.static_direction[: self.dim, : self.dim] = static_direction self.moving_direction[: self.dim, : self.dim] = moving_direction # Build the scale space of the input images if self.verbosity >= VerbosityLevels.DIAGNOSE: logger.info(f"Applying zero mask: {self.mask0}") if self.verbosity >= VerbosityLevels.STATUS: logger.info( f"Creating scale space from the moving image. Levels: {self.levels}. " f"Sigma factor: {self.ss_sigma_factor:f}." ) self.moving_ss = ScaleSpace( moving, self.levels, image_grid2world=moving_grid2world, input_spacing=moving_spacing, sigma_factor=self.ss_sigma_factor, mask0=self.mask0, ) if self.verbosity >= VerbosityLevels.STATUS: logger.info( f"Creating scale space from the static image. Levels: {self.levels}. " f"Sigma factor: {self.ss_sigma_factor:f}." ) self.static_ss = ScaleSpace( static, self.levels, image_grid2world=static_grid2world, input_spacing=static_spacing, sigma_factor=self.ss_sigma_factor, mask0=self.mask0, ) if self.verbosity >= VerbosityLevels.DEBUG: logger.info("Moving scale space:") for level in range(self.levels): self.moving_ss.print_level(level) logger.info("Static scale space:") for level in range(self.levels): self.static_ss.print_level(level) # Get the properties of the coarsest level from the static image. These # properties will be taken as the reference discretization. disp_shape = self.static_ss.get_domain_shape(self.levels - 1) disp_grid2world = self.static_ss.get_affine(self.levels - 1) # The codomain discretization of both diffeomorphic maps is # precisely the discretization of the static image codomain_shape = static.shape codomain_grid2world = static_grid2world # The forward model transforms points from the static image # to points on the reference (which is the static as well). So the # domain properties are taken from the static image. Since its the same # as the reference, we don't need to pre-align. domain_shape = static.shape domain_grid2world = static_grid2world self.static_to_ref = DiffeomorphicMap( dim=self.dim, disp_shape=disp_shape, disp_grid2world=disp_grid2world, domain_shape=domain_shape, domain_grid2world=domain_grid2world, codomain_shape=codomain_shape, codomain_grid2world=codomain_grid2world, prealign=None, ) self.static_to_ref.allocate() # The backward model transforms points from the moving image # to points on the reference (which is the static). So the input # properties are taken from the moving image, and we need to pre-align # points on the moving physical space to the reference physical space # by applying the inverse of pre-align. This is done this way to make # it clear for the user: the pre-align matrix is usually obtained by # doing affine registration of the moving image towards the static # image, which results in a matrix transforming points in the static # physical space to points in the moving physical space prealign_inv = None if prealign is None else npl.inv(prealign) domain_shape = moving.shape domain_grid2world = moving_grid2world self.moving_to_ref = DiffeomorphicMap( dim=self.dim, disp_shape=disp_shape, disp_grid2world=disp_grid2world, domain_shape=domain_shape, domain_grid2world=domain_grid2world, codomain_shape=codomain_shape, codomain_grid2world=codomain_grid2world, prealign=prealign_inv, ) self.moving_to_ref.allocate() def _end_optimizer(self): """Frees the resources allocated during initialization""" del self.moving_ss del self.static_ss def _iterate(self): """Performs one symmetric iteration Performs one iteration of the SyN algorithm: 1.Compute forward 2.Compute backward 3.Update forward 4.Update backward 5.Compute inverses 6.Invert the inverses Returns ------- der : float the derivative of the energy profile, computed by fitting a quadratic function to the energy values at the latest T iterations, where T = self.energy_window. If the current iteration is less than T then np.inf is returned instead. """ # Acquire current resolution information from scale spaces current_moving = self.moving_ss.get_image(self.current_level) current_static = self.static_ss.get_image(self.current_level) current_disp_shape = self.static_ss.get_domain_shape(self.current_level) current_disp_grid2world = self.static_ss.get_affine(self.current_level) current_disp_world2grid = self.static_ss.get_affine_inv(self.current_level) current_disp_spacing = self.static_ss.get_spacing(self.current_level) # Warp the input images (smoothed to the current scale) to the common # (reference) space at the current resolution wstatic = self.static_to_ref.transform_inverse( current_static, interpolation="linear", image_world2grid=None, out_shape=current_disp_shape, out_grid2world=current_disp_grid2world, ) wmoving = self.moving_to_ref.transform_inverse( current_moving, interpolation="linear", image_world2grid=None, out_shape=current_disp_shape, out_grid2world=current_disp_grid2world, ) # Pass both images to the metric. Now both images are sampled on the # reference grid (equal to the static image's grid) and the direction # doesn't change across scales self.metric.set_moving_image( wmoving, current_disp_grid2world, current_disp_spacing, self.static_direction, ) self.metric.use_moving_image_dynamics( current_moving, self.moving_to_ref.inverse() ) self.metric.set_static_image( wstatic, current_disp_grid2world, current_disp_spacing, self.static_direction, ) self.metric.use_static_image_dynamics( current_static, self.static_to_ref.inverse() ) # Initialize the metric for a new iteration self.metric.initialize_iteration() if self.callback is not None: self.callback(self, RegistrationStages.ITER_START) # Compute the forward step (to be used to update the forward transform) fw_step = np.array(self.metric.compute_forward()) # set zero displacements at the boundary fw_step = self.__set_no_boundary_displacement(fw_step) # Normalize the forward step nrm = np.sqrt(np.sum((fw_step / current_disp_spacing) ** 2, -1)).max() if nrm > 0: fw_step /= nrm # Add to current total field self.static_to_ref.forward, md_forward = self.update( self.static_to_ref.forward, fw_step, current_disp_world2grid, self.step_length, ) del fw_step # Keep track of the forward energy fw_energy = self.metric.get_energy() # Compose backward step (to be used to update the backward transform) bw_step = np.array(self.metric.compute_backward()) # set zero displacements at the boundary bw_step = self.__set_no_boundary_displacement(bw_step) # Normalize the backward step nrm = np.sqrt(np.sum((bw_step / current_disp_spacing) ** 2, -1)).max() if nrm > 0: bw_step /= nrm # Add to current total field self.moving_to_ref.forward, md_backward = self.update( self.moving_to_ref.forward, bw_step, current_disp_world2grid, self.step_length, ) del bw_step # Keep track of the energy bw_energy = self.metric.get_energy() der = np.inf n_iter = len(self.energy_list) if len(self.energy_list) >= self.energy_window: der = self._get_energy_derivative() if self.verbosity >= VerbosityLevels.DIAGNOSE: ch = "-" if np.isnan(der) else der logger.info( "%d:\t%0.6f\t%0.6f\t%0.6f\t%s" % (n_iter, fw_energy, bw_energy, fw_energy + bw_energy, ch) ) self.energy_list.append(fw_energy + bw_energy) self.__invert_models(current_disp_world2grid, current_disp_spacing) # Free resources no longer needed to compute the forward and backward # steps if self.callback is not None: self.callback(self, RegistrationStages.ITER_END) self.metric.free_iteration() return der def __set_no_boundary_displacement(self, step): """set zero displacements at the boundary Parameters ---------- step : array, ndim 2 or 3 displacements field Returns ------- step : array, ndim 2 or 3 displacements field """ step[0, ...] = 0 step[:, 0, ...] = 0 step[-1, ...] = 0 step[:, -1, ...] = 0 if self.dim == 3: step[:, :, 0, ...] = 0 step[:, :, -1, ...] = 0 return step def __invert_models(self, current_disp_world2grid, current_disp_spacing): """Converting static - moving models in both direction. Parameters ---------- current_disp_world2grid : array, shape (3, 3) or (4, 4) the space-to-grid transformation associated to the displacement field d (transforming physical space coordinates to voxel coordinates of the displacement field grid) current_disp_spacing :array, shape (2,) or (3,) the spacing between voxels (voxel size along each axis) """ # Invert the forward model's forward field self.static_to_ref.backward = np.array( self.invert_vector_field( self.static_to_ref.forward, current_disp_world2grid, current_disp_spacing, self.inv_iter, self.inv_tol, start=self.static_to_ref.backward, ) ) # Invert the backward model's forward field self.moving_to_ref.backward = np.array( self.invert_vector_field( self.moving_to_ref.forward, current_disp_world2grid, current_disp_spacing, self.inv_iter, self.inv_tol, start=self.moving_to_ref.backward, ) ) # Invert the forward model's backward field self.static_to_ref.forward = np.array( self.invert_vector_field( self.static_to_ref.backward, current_disp_world2grid, current_disp_spacing, self.inv_iter, self.inv_tol, start=self.static_to_ref.forward, ) ) # Invert the backward model's backward field self.moving_to_ref.forward = np.array( self.invert_vector_field( self.moving_to_ref.backward, current_disp_world2grid, current_disp_spacing, self.inv_iter, self.inv_tol, start=self.moving_to_ref.forward, ) ) def _approximate_derivative_direct(self, x, y): """Derivative of the degree-2 polynomial fit of the given x, y pairs Directly computes the derivative of the least-squares-fit quadratic function estimated from (x[...],y[...]) pairs. Parameters ---------- x : array, shape (n,) increasing array representing the x-coordinates of the points to be fit y : array, shape (n,) array representing the y-coordinates of the points to be fit Returns ------- y0 : float the estimated derivative at x0 = 0.5*len(x) """ x = np.asarray(x) y = np.asarray(y) X = np.vstack((x**2, x, np.ones_like(x))) XX = X.dot(X.T) b = X.dot(y) beta = npl.solve(XX, b) x0 = 0.5 * len(x) y0 = 2.0 * beta[0] * x0 + beta[1] return y0 def _get_energy_derivative(self): """Approximate derivative of the energy profile Returns the derivative of the estimated energy as a function of "time" (iterations) at the last iteration """ n_iter = len(self.energy_list) if n_iter < self.energy_window: raise ValueError("Not enough data to fit the energy profile") x = range(self.energy_window) y = self.energy_list[(n_iter - self.energy_window) : n_iter] ss = sum(y) if not ss == 0: # avoid division by zero ss = -ss if ss > 0 else ss y = [v / ss for v in y] der = self._approximate_derivative_direct(x, y) return der def _optimize(self): """Starts the optimization The main multi-scale symmetric optimization algorithm """ self.full_energy_profile = [] if self.callback is not None: self.callback(self, RegistrationStages.OPT_START) for level in range(self.levels - 1, -1, -1): if self.verbosity >= VerbosityLevels.STATUS: logger.info(f"Optimizing level {level}") self.current_level = level self.metric.set_levels_below(self.levels - level) self.metric.set_levels_above(level) if level < self.levels - 1: expand_factors = self.static_ss.get_expand_factors(level + 1, level) new_shape = self.static_ss.get_domain_shape(level) self.static_to_ref.expand_fields(expand_factors, new_shape) self.moving_to_ref.expand_fields(expand_factors, new_shape) self.niter = 0 self.energy_list = [] derivative = np.inf if self.callback is not None: self.callback(self, RegistrationStages.SCALE_START) while (self.niter < self.level_iters[self.levels - 1 - level]) and ( self.opt_tol < derivative ): derivative = self._iterate() self.niter += 1 self.full_energy_profile.extend(self.energy_list) if self.callback is not None: self.callback(self, RegistrationStages.SCALE_END) # Reporting mean and std in stats[1] and stats[2] residual, stats = self.static_to_ref.compute_inversion_error() if self.verbosity >= VerbosityLevels.DIAGNOSE: logger.info( f"Static-Reference Residual error: {stats[1]:0.6f} ({stats[2]:0.6f})" ) residual, stats = self.moving_to_ref.compute_inversion_error() if self.verbosity >= VerbosityLevels.DIAGNOSE: logger.info( f"Moving-Reference Residual error :{stats[1]:0.6f} ({stats[2]:0.6f})" ) # Compose the two partial transformations self.static_to_ref = self.moving_to_ref.warp_endomorphism( self.static_to_ref.inverse() ).inverse() # Report mean and std for the composed deformation field residual, stats = self.static_to_ref.compute_inversion_error() if self.verbosity >= VerbosityLevels.DIAGNOSE: logger.info(f"Final residual error: {stats[1]:0.6f} ({stats[2]:0.6f})") if self.callback is not None: self.callback(self, RegistrationStages.OPT_END)
[docs] @warning_for_keywords() def optimize( self, static, moving, *, static_grid2world=None, moving_grid2world=None, prealign=None, ): """ Starts the optimization Parameters ---------- static : array, shape (S, R, C) or (R, C) the image to be used as reference during optimization. The displacement fields will have the same discretization as the static image. moving : array, shape (S, R, C) or (R, C) the image to be used as "moving" during optimization. Since the deformation fields' discretization is the same as the static image, it is necessary to pre-align the moving image to ensure its domain lies inside the domain of the deformation fields. This is assumed to be accomplished by "pre-aligning" the moving image towards the static using an affine transformation given by the 'prealign' matrix static_grid2world : array, shape (dim+1, dim+1) the voxel-to-space transformation associated to the static image moving_grid2world : array, shape (dim+1, dim+1) the voxel-to-space transformation associated to the moving image prealign : array, shape (dim+1, dim+1) the affine transformation (operating on the physical space) pre-aligning the moving image towards the static Returns ------- static_to_ref : DiffeomorphicMap object the diffeomorphic map that brings the moving image towards the static one in the forward direction (i.e. by calling static_to_ref.transform) and the static image towards the moving one in the backward direction (i.e. by calling static_to_ref.transform_inverse). """ if self.verbosity >= VerbosityLevels.DEBUG: if prealign is not None: logger.info(f"Pre-align: {prealign}") self._init_optimizer( static.astype(floating), moving.astype(floating), static_grid2world, moving_grid2world, prealign, ) self._optimize() self._end_optimizer() self.static_to_ref.forward = np.array(self.static_to_ref.forward) self.static_to_ref.backward = np.array(self.static_to_ref.backward) return self.static_to_ref