Continuous and analytical diffusion signal modelling with 3D-SHORE¶
We show how to model the diffusion signal as a linear combination of continuous functions from the SHORE basis [Merlet2013]. We also compute the analytical Orientation Distribution Function (ODF).
First import the necessary modules:
from dipy.reconst.shore import ShoreModel
from dipy.viz import window, actor
from dipy.data import fetch_isbi2013_2shell, read_isbi2013_2shell, get_sphere
Download and read the data for this tutorial.
fetch_isbi2013_2shell()
provides data from the ISBI HARDI contest 2013 acquired for two shells at
b-values 1500 \(s/mm^2\) and 2500 \(s/mm^2\).
The six parameters of these two functions define the ROI where to reconstruct
the data. They respectively correspond to (xmin,xmax,ymin,ymax,zmin,zmax)
with x, y, z and the three axis defining the spatial positions of the voxels.
fetch_isbi2013_2shell()
img, gtab = read_isbi2013_2shell()
data = img.get_data()
data_small = data[10:40, 22, 10:40]
print('data.shape (%d, %d, %d, %d)' % data.shape)
data
contains the voxel data and gtab
contains a GradientTable
object (gradient information e.g. b-values). For example, to show the b-values
it is possible to write:
print(gtab.bvals)
Instantiate the SHORE Model.
radial_order
is the radial order of the SHORE basis.
zeta
is the scale factor of the SHORE basis.
lambdaN
and lambdaL
are the radial and angular regularization
constants, respectively.
For details regarding these four parameters see [Cheng2011] and [Merlet2013].
radial_order = 6
zeta = 700
lambdaN = 1e-8
lambdaL = 1e-8
asm = ShoreModel(gtab, radial_order=radial_order,
zeta=zeta, lambdaN=lambdaN, lambdaL=lambdaL)
Fit the SHORE model to the data
asmfit = asm.fit(data_small)
Load an odf reconstruction sphere
sphere = get_sphere('repulsion724')
Compute the ODFs
odf = asmfit.odf(sphere)
print('odf.shape (%d, %d, %d)' % odf.shape)
Display the ODFs
# Enables/disables interactive visualization
interactive = False
ren = window.Renderer()
sfu = actor.odf_slicer(odf[:, None, :], sphere=sphere, colormap='plasma', scale=0.5)
sfu.RotateX(-90)
sfu.display(y=0)
ren.add(sfu)
window.record(ren, out_path='odfs.png', size=(600, 600))
if interactive:
window.show(ren)
References¶
- Merlet2013(1,2)
Merlet S. et al., “Continuous diffusion signal, EAP and ODF estimation via Compressive Sensing in diffusion MRI”, Medical Image Analysis, 2013.
- Cheng2011
Cheng J. et al., “Theoretical Analysis and Pratical Insights on EAP Estimation via Unified HARDI Framework”, MICCAI workshop on Computational Diffusion MRI, 2011.
Example source code
You can download the full source code of this example
. This same script is also included in the dipy source distribution under the doc/examples/
directory.