tracking
¶
Tracking objects
alias of |
|
|
Run benchmarks for module using nose. |
|
Run tests for module using nose. |
Module: tracking.benchmarks
¶
Module: tracking.benchmarks.bench_streamline
¶
Benchmarks for functions related to streamline
Run all benchmarks with:
import dipy.tracking as dipytracking
dipytracking.bench()
With Pytest, Run this benchmark with:
pytest -svv -c bench.ini /path/to/bench_streamline.py
alias of |
|
|
Raises an AssertionError if two objects are not equal up to desired precision. |
|
Raises an AssertionError if two array_like objects are not equal. |
Compress streamlines by linearization as in [Presseau15]. |
|
|
Python version of the FiberCompression found on https://github.com/scilus/FiberCompression. |
|
|
|
provides filenames of some test datasets or other useful parametrisations |
Euclidean length of streamlines |
|
|
|
|
Load the stateful tractogram from any format (trk, tck, fib, dpy) |
|
Return elapsed time for executing code in the namespace of the caller. |
Change the number of points of streamlines |
|
|
|
|
Module: tracking.learning
¶
Learning algorithms for tractography
|
Detect corresponding tracks from list tracks1 to list tracks2 where tracks1 & tracks2 are lists of tracks |
|
Detect corresponding tracks from 1 to 2 where tracks1 & tracks2 are sequences of tracks |
Module: tracking.life
¶
This is an implementation of the Linear Fascicle Evaluation (LiFE) algorithm described in:
Pestilli, F., Yeatman, J, Rokem, A. Kay, K. and Wandell B.A. (2014). Validation and statistical inference in living connectomes. Nature Methods 11: 1058-1063. doi:10.1038/nmeth.3098
|
A fit of the LiFE model to diffusion data |
|
A class for representing and solving predictive models based on tractography solutions. |
|
A class for generating signals from streamlines in an efficient and speedy manner. |
|
Abstract class which holds the fit result of ReconstModel |
|
Abstract class for signal reconstruction models |
|
Calculate the 3 by 3 tensor for a given spatial gradient, given a canonical tensor shape (also as a 3 by 3), pointing at [1,0,0] |
|
Return the gradient of an N-dimensional array. |
|
Calculate the gradients of the streamline along the spatial dimension |
|
The signal from a single streamline estimate along each of its nodes. |
|
The tensors generated by this fiber. |
|
Apply affine transformation to streamlines |
|
This (quickly) finds the unique rows in an array |
|
Maps voxels to streamlines and streamlines to voxels, for setting up the LiFE equations matrix |
Module: tracking.local_tracking
¶
Abstract class that takes as input included and excluded tissue maps. |
|
|
|
|
|
An enumeration. |
|
Tracks one direction from a seed. |
|
Tracks one direction from a seed using the particle filtering algorithm. |
Module: tracking.metrics
¶
Metrics for tracks, where tracks are arrays of points
|
Select an arbitrary point along distance on the track (curve) |
|
Size of track in bytes. |
|
Center of mass of streamline |
|
downsample for a specific number of points along the curve/track |
|
|
|
Frenet-Serret Space Curve Invariants |
|
Combine sets of size n from items |
|
If any point of the track is inside a sphere of a specified center and radius return True otherwise False. |
|
If a track intersects with a sphere of a specified center and radius return the points that are inside the sphere otherwise False. |
|
If any segment of the track is intersecting with a sphere of specific center and radius return True otherwise False |
|
Euclidean length of track line |
|
Return longest track or length sorted track indices in bundle |
|
magnitude of vector |
|
Calculates the mean curvature of a curve |
|
Calculates the mean orientation of a curve |
|
Midpoint of track |
|
Calculate distance from midpoint of a curve to arbitrary point p |
|
We use PCA to calculate the 3 principal directions for a track |
|
Evaluate a B-spline or its derivatives. |
|
Generate B-splines as documented in http://www.scipy.org/Cookbook/Interpolation |
|
Find the B-spline representation of an N-dimensional curve. |
|
First point of the track |
|
Total turning angle projected. |
Module: tracking.streamline
¶
alias of |
|
|
Apply affine matrix aff to points pts |
Calculate distances between list of tracks A and list of tracks B |
|
|
Compute distance between each pair of the two collections of inputs. |
|
Move streamlines to the origin |
|
Computes the cluster confidence index (cci), which is an estimation of the support a set of streamlines gives to a particular pathway. |
Compress streamlines by linearization as in [Presseau15]. |
|
|
Deep copy operation on arbitrary Python objects. |
|
Apply deformation field to streamlines |
|
Calculate the maximal distance from the center to a corner of a voxel, given an affine |
Trilinear interpolation of a 3D scalar image |
|
Trilinear interpolation of a 3D vector field |
|
Euclidean length of streamlines |
|
|
|
|
Orient a set of streamlines according to a pair of ROIs |
|
Orient a bundle of streamlines to a standard streamline. |
|
Given a representation of a set of streamlines as a large array and an offsets array return the streamlines as a list of shorter arrays. |
|
Select streamlines based on logical relations with several regions of interest (ROIs). |
|
Select a random set of streamlines |
Change the number of points of streamlines |
|
|
Apply affine transformation to streamlines |
|
Return the streamlines not as a list but as an array and an offset |
|
Extract values of a scalar/vector along each streamline from a volume. |
Issue a warning, or maybe ignore it or raise an exception. |
Module: tracking.utils
¶
Various tools related to creating and working with streamlines
This module provides tools for targeting streamlines using ROIs, for making connectivity matrices from whole brain fiber tracking and some other tools that allow streamlines to interact with image data.
Important Notes¶
Dipy uses affine matrices to represent the relationship between streamline
points, which are defined as points in a continuous 3d space, and image voxels,
which are typically arranged in a discrete 3d grid. Dipy uses a convention
similar to nifti files to interpret these affine matrices. This convention is
that the point at the center of voxel [i, j, k]
is represented by the point
[x, y, z]
where [x, y, z, 1] = affine * [i, j, k, 1]
. Also when the
phrase “voxel coordinates” is used, it is understood to be the same as affine
= eye(4)
.
As an example, lets take a 2d image where the affine is:
[[1., 0., 0.],
[0., 2., 0.],
[0., 0., 1.]]
The pixels of an image with this affine would look something like:
A------------
| | | |
| C | | |
| | | |
----B--------
| | | |
| | | |
| | | |
-------------
| | | |
| | | |
| | | |
------------D
And the letters A-D represent the following points in “real world coordinates”:
A = [-.5, -1.]
B = [ .5, 1.]
C = [ 0., 0.]
D = [ 2.5, 5.]
defaultdict(default_factory[, …]) –> dict with default factory |
|
|
Apply affine matrix aff to points pts |
|
Convert the input to an array. |
|
Compute distance between each pair of the two collections of inputs. |
|
Counts the streamlines that start and end at each label pair. |
|
Counts the number of unique streamlines that pass through each voxel. |
|
Calculate the maximal distance from the center to a corner of a voxel, given an affine |
|
Return a new array of given shape and type, without initializing entries. |
|
Calculate the lengths of many streamlines in a bundle. |
|
Performs unbuffered in place operation on operand ‘a’ for elements specified by ‘indices’. |
|
Like bincount, but for nd-indices. |
|
Provide filtering criteria for a set of streamlines based on whether they fall within a tolerance distance from an ROI |
|
Computes the shortest path, along any streamline, between aoi and each voxel. |
|
Create randomly placed seeds for fiber tracking from a binary mask. |
|
Converts a tuple of index arrays into an array of flat indices, applying boundary modes to the multi-index. |
|
Reduces an array of labels to the integers from 0 to n with smallest possible n. |
|
Reduce multiple ROIs to one inclusion and one exclusion ROI. |
|
Create seeds for fiber tracking from a binary mask. |
|
Is a streamline near an ROI. |
|
Splits the segments of the streamlines into small segments. |
|
Filters streamlines based on whether or not they pass through an ROI. |
|
Filters streamlines based on whether or not they pass through a ROI, using a line-based algorithm. |
|
Applies a linear transformation, given by affine, to streamlines. |
|
This (quickly) finds the unique rows in an array |
Issue a warning, or maybe ignore it or raise an exception. |
|
|
Decorator factory to apply update_wrapper() to a wrapper function |
Streamlines
¶
-
dipy.tracking.
Streamlines
¶ alias of
nibabel.streamlines.array_sequence.ArraySequence
bench¶
-
dipy.tracking.
bench
(label='fast', verbose=1, extra_argv=None)¶ Run benchmarks for module using nose.
- Parameters
- label{‘fast’, ‘full’, ‘’, attribute identifier}, optional
Identifies the benchmarks to run. This can be a string to pass to the nosetests executable with the ‘-A’ option, or one of several special values. Special values are:
‘fast’ - the default - which corresponds to the
nosetests -A
option of ‘not slow’.‘full’ - fast (as above) and slow benchmarks as in the ‘no -A’ option to nosetests - this is the same as ‘’.
None or ‘’ - run all tests.
attribute_identifier - string passed directly to nosetests as ‘-A’.
- verboseint, optional
Verbosity value for benchmark outputs, in the range 1-10. Default is 1.
- extra_argvlist, optional
List with any extra arguments to pass to nosetests.
- Returns
- successbool
Returns True if running the benchmarks works, False if an error occurred.
Notes
Benchmarks are like tests, but have names starting with “bench” instead of “test”, and can be found under the “benchmarks” sub-directory of the module.
Each NumPy module exposes bench in its namespace to run all benchmarks for it.
Examples
>>> success = np.lib.bench() #doctest: +SKIP Running benchmarks for numpy.lib ... using 562341 items: unique: 0.11 unique1d: 0.11 ratio: 1.0 nUnique: 56230 == 56230 ... OK
>>> success #doctest: +SKIP True
test¶
-
dipy.tracking.
test
(label='fast', verbose=1, extra_argv=None, doctests=False, coverage=False, raise_warnings=None, timer=False)¶ Run tests for module using nose.
- Parameters
- label{‘fast’, ‘full’, ‘’, attribute identifier}, optional
Identifies the tests to run. This can be a string to pass to the nosetests executable with the ‘-A’ option, or one of several special values. Special values are:
‘fast’ - the default - which corresponds to the
nosetests -A
option of ‘not slow’.‘full’ - fast (as above) and slow tests as in the ‘no -A’ option to nosetests - this is the same as ‘’.
None or ‘’ - run all tests.
attribute_identifier - string passed directly to nosetests as ‘-A’.
- verboseint, optional
Verbosity value for test outputs, in the range 1-10. Default is 1.
- extra_argvlist, optional
List with any extra arguments to pass to nosetests.
- doctestsbool, optional
If True, run doctests in module. Default is False.
- coveragebool, optional
If True, report coverage of NumPy code. Default is False. (This requires the coverage module).
- raise_warningsNone, str or sequence of warnings, optional
This specifies which warnings to configure as ‘raise’ instead of being shown once during the test execution. Valid strings are:
“develop” : equals
(Warning,)
“release” : equals
()
, do not raise on any warnings.
- timerbool or int, optional
Timing of individual tests with
nose-timer
(which needs to be installed). If True, time tests and report on all of them. If an integer (sayN
), report timing results forN
slowest tests.
- Returns
- resultobject
Returns the result of running the tests as a
nose.result.TextTestResult
object.
Notes
Each NumPy module exposes test in its namespace to run all tests for it. For example, to run all tests for numpy.lib:
>>> np.lib.test() #doctest: +SKIP
Examples
>>> result = np.lib.test() #doctest: +SKIP Running unit tests for numpy.lib ... Ran 976 tests in 3.933s
OK
>>> result.errors #doctest: +SKIP [] >>> result.knownfail #doctest: +SKIP []
Streamlines
¶
-
dipy.tracking.benchmarks.bench_streamline.
Streamlines
¶ alias of
nibabel.streamlines.array_sequence.ArraySequence
assert_array_almost_equal¶
-
dipy.tracking.benchmarks.bench_streamline.
assert_array_almost_equal
(x, y, decimal=6, err_msg='', verbose=True)¶ Raises an AssertionError if two objects are not equal up to desired precision.
Note
It is recommended to use one of assert_allclose, assert_array_almost_equal_nulp or assert_array_max_ulp instead of this function for more consistent floating point comparisons.
The test verifies identical shapes and that the elements of
actual
anddesired
satisfy.abs(desired-actual) < 1.5 * 10**(-decimal)
That is a looser test than originally documented, but agrees with what the actual implementation did up to rounding vagaries. An exception is raised at shape mismatch or conflicting values. In contrast to the standard usage in numpy, NaNs are compared like numbers, no assertion is raised if both objects have NaNs in the same positions.
- Parameters
- xarray_like
The actual object to check.
- yarray_like
The desired, expected object.
- decimalint, optional
Desired precision, default is 6.
- err_msgstr, optional
The error message to be printed in case of failure.
- verbosebool, optional
If True, the conflicting values are appended to the error message.
- Raises
- AssertionError
If actual and desired are not equal up to specified precision.
See also
assert_allclose
Compare two array_like objects for equality with desired relative and/or absolute precision.
assert_array_almost_equal_nulp
,assert_array_max_ulp
,assert_equal
Examples
the first assert does not raise an exception
>>> np.testing.assert_array_almost_equal([1.0,2.333,np.nan], ... [1.0,2.333,np.nan])
>>> np.testing.assert_array_almost_equal([1.0,2.33333,np.nan], ... [1.0,2.33339,np.nan], decimal=5) Traceback (most recent call last): ... AssertionError: Arrays are not almost equal to 5 decimals Mismatch: 33.3% Max absolute difference: 6.e-05 Max relative difference: 2.57136612e-05 x: array([1. , 2.33333, nan]) y: array([1. , 2.33339, nan])
>>> np.testing.assert_array_almost_equal([1.0,2.33333,np.nan], ... [1.0,2.33333, 5], decimal=5) Traceback (most recent call last): ... AssertionError: Arrays are not almost equal to 5 decimals x and y nan location mismatch: x: array([1. , 2.33333, nan]) y: array([1. , 2.33333, 5. ])
assert_array_equal¶
-
dipy.tracking.benchmarks.bench_streamline.
assert_array_equal
(x, y, err_msg='', verbose=True)¶ Raises an AssertionError if two array_like objects are not equal.
Given two array_like objects, check that the shape is equal and all elements of these objects are equal. An exception is raised at shape mismatch or conflicting values. In contrast to the standard usage in numpy, NaNs are compared like numbers, no assertion is raised if both objects have NaNs in the same positions.
The usual caution for verifying equality with floating point numbers is advised.
- Parameters
- xarray_like
The actual object to check.
- yarray_like
The desired, expected object.
- err_msgstr, optional
The error message to be printed in case of failure.
- verbosebool, optional
If True, the conflicting values are appended to the error message.
- Raises
- AssertionError
If actual and desired objects are not equal.
See also
assert_allclose
Compare two array_like objects for equality with desired relative and/or absolute precision.
assert_array_almost_equal_nulp
,assert_array_max_ulp
,assert_equal
Examples
The first assert does not raise an exception:
>>> np.testing.assert_array_equal([1.0,2.33333,np.nan], ... [np.exp(0),2.33333, np.nan])
Assert fails with numerical inprecision with floats:
>>> np.testing.assert_array_equal([1.0,np.pi,np.nan], ... [1, np.sqrt(np.pi)**2, np.nan]) Traceback (most recent call last): ... AssertionError: Arrays are not equal Mismatch: 33.3% Max absolute difference: 4.4408921e-16 Max relative difference: 1.41357986e-16 x: array([1. , 3.141593, nan]) y: array([1. , 3.141593, nan])
Use assert_allclose or one of the nulp (number of floating point values) functions for these cases instead:
>>> np.testing.assert_allclose([1.0,np.pi,np.nan], ... [1, np.sqrt(np.pi)**2, np.nan], ... rtol=1e-10, atol=0)
compress_streamlines¶
-
dipy.tracking.benchmarks.bench_streamline.
compress_streamlines
()¶ Compress streamlines by linearization as in [Presseau15].
The compression consists in merging consecutive segments that are nearly collinear. The merging is achieved by removing the point the two segments have in common.
The linearization process [Presseau15] ensures that every point being removed are within a certain margin (in mm) of the resulting streamline. Recommendations for setting this margin can be found in [Presseau15] (in which they called it tolerance error).
The compression also ensures that two consecutive points won’t be too far from each other (precisely less or equal than `max_segment_length`mm). This is a tradeoff to speed up the linearization process [Rheault15]. A low value will result in a faster linearization but low compression, whereas a high value will result in a slower linearization but high compression.
- Parameters
- streamlinesone or a list of array-like of shape (N,3)
Array representing x,y,z of N points in a streamline.
- tol_errorfloat (optional)
Tolerance error in mm (default: 0.01). A rule of thumb is to set it to 0.01mm for deterministic streamlines and 0.1mm for probabilitic streamlines.
- max_segment_lengthfloat (optional)
Maximum length in mm of any given segment produced by the compression. The default is 10mm. (In [Presseau15], they used a value of np.inf).
- Returns
- compressed_streamlinesone or a list of array-like
Results of the linearization process.
Notes
Be aware that compressed streamlines have variable step sizes. One needs to be careful when computing streamlines-based metrics [Houde15].
References
- Presseau15(1,2,3,4,5,6)
Presseau C. et al., A new compression format for fiber tracking datasets, NeuroImage, no 109, 73-83, 2015.
- Rheault15(1,2)
Rheault F. et al., Real Time Interaction with Millions of Streamlines, ISMRM, 2015.
- Houde15(1,2)
Houde J.-C. et al. How to Avoid Biased Streamlines-Based Metrics for Streamlines with Variable Step Sizes, ISMRM, 2015.
Examples
>>> from dipy.tracking.streamline import compress_streamlines >>> import numpy as np >>> # One streamline: a wiggling line >>> rng = np.random.RandomState(42) >>> streamline = np.linspace(0, 10, 100*3).reshape((100, 3)) >>> streamline += 0.2 * rng.rand(100, 3) >>> c_streamline = compress_streamlines(streamline, tol_error=0.2) >>> len(streamline) 100 >>> len(c_streamline) 10 >>> # Multiple streamlines >>> streamlines = [streamline, streamline[::2]] >>> c_streamlines = compress_streamlines(streamlines, tol_error=0.2) >>> [len(s) for s in streamlines] [100, 50] >>> [len(s) for s in c_streamlines] [10, 7]
compress_streamlines_python¶
-
dipy.tracking.benchmarks.bench_streamline.
compress_streamlines_python
(streamline, tol_error=0.01, max_segment_length=10)¶ Python version of the FiberCompression found on https://github.com/scilus/FiberCompression.
generate_streamlines¶
-
dipy.tracking.benchmarks.bench_streamline.
generate_streamlines
(nb_streamlines, min_nb_points, max_nb_points, rng)¶
get_fnames¶
-
dipy.tracking.benchmarks.bench_streamline.
get_fnames
(name='small_64D')¶ provides filenames of some test datasets or other useful parametrisations
- Parameters
- namestr
the filename/s of which dataset to return, one of: ‘small_64D’ small region of interest nifti,bvecs,bvals 64 directions ‘small_101D’ small region of interest nifti,bvecs,bvals 101 directions ‘aniso_vox’ volume with anisotropic voxel size as Nifti ‘fornix’ 300 tracks in Trackvis format (from Pittsburgh
Brain Competition)
- ‘gqi_vectors’ the scanner wave vectors needed for a GQI acquisitions
of 101 directions tested on Siemens 3T Trio
‘small_25’ small ROI (10x8x2) DTI data (b value 2000, 25 directions) ‘test_piesno’ slice of N=8, K=14 diffusion data ‘reg_c’ small 2D image used for validating registration ‘reg_o’ small 2D image used for validation registration ‘cb_2’ two vectorized cingulum bundles
- Returns
- fnamestuple
filenames for dataset
Examples
>>> import numpy as np >>> from dipy.data import get_fnames >>> fimg,fbvals,fbvecs=get_fnames('small_101D') >>> bvals=np.loadtxt(fbvals) >>> bvecs=np.loadtxt(fbvecs).T >>> import nibabel as nib >>> img=nib.load(fimg) >>> data=img.get_data() >>> data.shape == (6, 10, 10, 102) True >>> bvals.shape == (102,) True >>> bvecs.shape == (102, 3) True
length¶
-
dipy.tracking.benchmarks.bench_streamline.
length
()¶ Euclidean length of streamlines
Length is in mm only if streamlines are expressed in world coordinates.
- Parameters
- streamlinesndarray or a list or
dipy.tracking.Streamlines
If ndarray, must have shape (N,3) where N is the number of points of the streamline. If list, each item must be ndarray shape (Ni,3) where Ni is the number of points of streamline i. If
dipy.tracking.Streamlines
, its common_shape must be 3.
- streamlinesndarray or a list or
- Returns
- lengthsscalar or ndarray shape (N,)
If there is only one streamline, a scalar representing the length of the streamline. If there are several streamlines, ndarray containing the length of every streamline.
Examples
>>> from dipy.tracking.streamline import length >>> import numpy as np >>> streamline = np.array([[1, 1, 1], [2, 3, 4], [0, 0, 0]]) >>> expected_length = np.sqrt([1+2**2+3**2, 2**2+3**2+4**2]).sum() >>> length(streamline) == expected_length True >>> streamlines = [streamline, np.vstack([streamline, streamline[::-1]])] >>> expected_lengths = [expected_length, 2*expected_length] >>> lengths = [length(streamlines[0]), length(streamlines[1])] >>> np.allclose(lengths, expected_lengths) True >>> length([]) 0.0 >>> length(np.array([[1, 2, 3]])) 0.0
load_tractogram¶
-
dipy.tracking.benchmarks.bench_streamline.
load_tractogram
(filename, reference, to_space=<Space.RASMM: 'rasmm'>, shifted_origin=False, bbox_valid_check=True, trk_header_check=True)¶ Load the stateful tractogram from any format (trk, tck, fib, dpy)
- Parameters
- filenamestring
Filename with valid extension
- referenceNifti or Trk filename, Nifti1Image or TrkFile, Nifti1Header or
trk.header (dict), or ‘same’ if the input is a trk file. Reference that provides the spatial attribute. Typically a nifti-related object from the native diffusion used for streamlines generation
- spacestring
Space in which the streamlines will be transformed after loading (vox, voxmm or rasmm)
- shifted_originbool
Information on the position of the origin, False is Trackvis standard, default (center of the voxel) True is NIFTI standard (corner of the voxel)
- Returns
- outputStatefulTractogram
The tractogram to load (must have been saved properly)
measure¶
-
dipy.tracking.benchmarks.bench_streamline.
measure
(code_str, times=1, label=None)¶ Return elapsed time for executing code in the namespace of the caller.
The supplied code string is compiled with the Python builtin
compile
. The precision of the timing is 10 milli-seconds. If the code will execute fast on this timescale, it can be executed many times to get reasonable timing accuracy.- Parameters
- code_strstr
The code to be timed.
- timesint, optional
The number of times the code is executed. Default is 1. The code is only compiled once.
- labelstr, optional
A label to identify code_str with. This is passed into
compile
as the second argument (for run-time error messages).
- Returns
- elapsedfloat
Total elapsed time in seconds for executing code_str times times.
Examples
>>> times = 10 >>> etime = np.testing.measure('for i in range(1000): np.sqrt(i**2)', times=times) >>> print("Time for a single execution : ", etime / times, "s") # doctest: +SKIP Time for a single execution : 0.005 s
set_number_of_points¶
-
dipy.tracking.benchmarks.bench_streamline.
set_number_of_points
()¶ - Change the number of points of streamlines
(either by downsampling or upsampling)
Change the number of points of streamlines in order to obtain nb_points-1 segments of equal length. Points of streamlines will be modified along the curve.
- Parameters
- streamlinesndarray or a list or
dipy.tracking.Streamlines
If ndarray, must have shape (N,3) where N is the number of points of the streamline. If list, each item must be ndarray shape (Ni,3) where Ni is the number of points of streamline i. If
dipy.tracking.Streamlines
, its common_shape must be 3.- nb_pointsint
integer representing number of points wanted along the curve.
- streamlinesndarray or a list or
- Returns
- new_streamlinesndarray or a list or
dipy.tracking.Streamlines
Results of the downsampling or upsampling process.
- new_streamlinesndarray or a list or
Examples
>>> from dipy.tracking.streamline import set_number_of_points >>> import numpy as np
One streamline, a semi-circle:
>>> theta = np.pi*np.linspace(0, 1, 100) >>> x = np.cos(theta) >>> y = np.sin(theta) >>> z = 0 * x >>> streamline = np.vstack((x, y, z)).T >>> modified_streamline = set_number_of_points(streamline, 3) >>> len(modified_streamline) 3
Multiple streamlines:
>>> streamlines = [streamline, streamline[::2]] >>> new_streamlines = set_number_of_points(streamlines, 10) >>> [len(s) for s in streamlines] [100, 50] >>> [len(s) for s in new_streamlines] [10, 10]
set_number_of_points_python¶
-
dipy.tracking.benchmarks.bench_streamline.
set_number_of_points_python
(xyz, n_pols=3)¶
detect_corresponding_tracks¶
-
dipy.tracking.learning.
detect_corresponding_tracks
(indices, tracks1, tracks2)¶ Detect corresponding tracks from list tracks1 to list tracks2 where tracks1 & tracks2 are lists of tracks
- Parameters
- indicessequence
of indices of tracks1 that are to be detected in tracks2
- tracks1sequence
of tracks as arrays, shape (N1,3) .. (Nm,3)
- tracks2sequence
of tracks as arrays, shape (M1,3) .. (Mm,3)
- Returns
- track2trackarray (N,2) where N is len(indices) of int
it shows the correspondance in the following way: the first column is the current index in tracks1 the second column is the corresponding index in tracks2
Notes
To find the corresponding tracks we use mam_distances with ‘avg’ option. Then we calculate the argmin of all the calculated distances and return it for every index. (See 3rd column of arr in the example given below.)
Examples
>>> import numpy as np >>> import dipy.tracking.learning as tl >>> A = np.array([[0, 0, 0], [1, 1, 1], [2, 2, 2]]) >>> B = np.array([[1, 0, 0], [2, 0, 0], [3, 0, 0]]) >>> C = np.array([[0, 0, -1], [0, 0, -2], [0, 0, -3]]) >>> bundle1 = [A, B, C] >>> bundle2 = [B, A] >>> indices = [0, 1] >>> arr = tl.detect_corresponding_tracks(indices, bundle1, bundle2)
detect_corresponding_tracks_plus¶
-
dipy.tracking.learning.
detect_corresponding_tracks_plus
(indices, tracks1, indices2, tracks2)¶ Detect corresponding tracks from 1 to 2 where tracks1 & tracks2 are sequences of tracks
- Parameters
- indicessequence
of indices of tracks1 that are to be detected in tracks2
- tracks1sequence
of tracks as arrays, shape (N1,3) .. (Nm,3)
- indices2sequence
of indices of tracks2 in the initial brain
- tracks2sequence
of tracks as arrays, shape (M1,3) .. (Mm,3)
- Returns
- track2trackarray (N,2) where N is len(indices)
of int showing the correspondance in th following way the first colum is the current index of tracks1 the second column is the corresponding index in tracks2
See also
distances.mam_distances
Notes
To find the corresponding tracks we use mam_distances with ‘avg’ option. Then we calculate the argmin of all the calculated distances and return it for every index. (See 3rd column of arr in the example given below.)
Examples
>>> import numpy as np >>> import dipy.tracking.learning as tl >>> A = np.array([[0, 0, 0], [1, 1, 1], [2, 2, 2]]) >>> B = np.array([[1, 0, 0], [2, 0, 0], [3, 0, 0]]) >>> C = np.array([[0, 0, -1], [0, 0, -2], [0, 0, -3]]) >>> bundle1 = [A, B, C] >>> bundle2 = [B, A] >>> indices = [0, 1] >>> indices2 = indices >>> arr = tl.detect_corresponding_tracks_plus(indices, bundle1, indices2, bundle2)
FiberFit
¶
-
class
dipy.tracking.life.
FiberFit
(fiber_model, life_matrix, vox_coords, to_fit, beta, weighted_signal, b0_signal, relative_signal, mean_sig, vox_data, streamline, affine, evals)¶ Bases:
dipy.reconst.base.ReconstFit
A fit of the LiFE model to diffusion data
Methods
predict
([gtab, S0])Predict the signal
-
__init__
(fiber_model, life_matrix, vox_coords, to_fit, beta, weighted_signal, b0_signal, relative_signal, mean_sig, vox_data, streamline, affine, evals)¶ - Parameters
- fiber_modelA FiberModel class instance
- paramsthe parameters derived from a fit of the model to the data.
-
predict
(gtab=None, S0=None)¶ Predict the signal
- Parameters
- gtabGradientTable
Default: use self.gtab
- S0float or array
The non-diffusion-weighted signal in the voxels for which a prediction is made. Default: use self.b0_signal
- Returns
- predictionndarray of shape (voxels, bvecs)
An array with a prediction of the signal in each voxel/direction
-
FiberModel
¶
-
class
dipy.tracking.life.
FiberModel
(gtab)¶ Bases:
dipy.reconst.base.ReconstModel
A class for representing and solving predictive models based on tractography solutions.
Notes
This is an implementation of the LiFE model described in [1]_
- [1] Pestilli, F., Yeatman, J, Rokem, A. Kay, K. and Wandell
B.A. (2014). Validation and statistical inference in living connectomes. Nature Methods.
Methods
fit
(data, streamline, affine[, evals, sphere])Fit the LiFE FiberModel for data and a set of streamlines associated with this data
setup
(streamline, affine[, evals, sphere])Set up the necessary components for the LiFE model: the matrix of fiber-contributions to the DWI signal, and the coordinates of voxels for which the equations will be solved
-
__init__
(gtab)¶ - Parameters
- gtaba GradientTable class instance
-
fit
(data, streamline, affine, evals=[0.001, 0, 0], sphere=None)¶ Fit the LiFE FiberModel for data and a set of streamlines associated with this data
- Parameters
- data4D array
Diffusion-weighted data
- streamlinelist
A bunch of streamlines
- affinearray_like (4, 4)
The mapping from voxel coordinates to streamline points. The voxel_to_rasmm matrix, typically from a NIFTI file.
- evalslist (optional)
The eigenvalues of the tensor response function used in constructing the model signal. Default: [0.001, 0, 0]
- sphere: `dipy.core.Sphere` instance, or False
Whether to approximate (and cache) the signal on a discrete sphere. This may confer a significant speed-up in setting up the problem, but is not as accurate. If False, we use the exact gradients along the streamlines to calculate the matrix, instead of an approximation.
- Returns
- FiberFit class instance
-
setup
(streamline, affine, evals=[0.001, 0, 0], sphere=None)¶ Set up the necessary components for the LiFE model: the matrix of fiber-contributions to the DWI signal, and the coordinates of voxels for which the equations will be solved
- Parameters
- streamlinelist
Streamlines, each is an array of shape (n, 3)
- affinearray_like (4, 4)
The mapping from voxel coordinates to streamline points. The voxel_to_rasmm matrix, typically from a NIFTI file.
- evalslist (3 items, optional)
The eigenvalues of the canonical tensor used as a response function. Default:[0.001, 0, 0].
- sphere: `dipy.core.Sphere` instance.
Whether to approximate (and cache) the signal on a discrete sphere. This may confer a significant speed-up in setting up the problem, but is not as accurate. If False, we use the exact gradients along the streamlines to calculate the matrix, instead of an approximation. Defaults to use the 724-vertex symmetric sphere from
dipy.data
LifeSignalMaker
¶
-
class
dipy.tracking.life.
LifeSignalMaker
(gtab, evals=[0.001, 0, 0], sphere=None)¶ Bases:
object
A class for generating signals from streamlines in an efficient and speedy manner.
Methods
streamline_signal
(streamline)Approximate the signal for a given streamline
calc_signal
-
__init__
(gtab, evals=[0.001, 0, 0], sphere=None)¶ Initialize a signal maker
- Parameters
- gtabGradientTable class instance
The gradient table on which the signal is calculated.
- evalslist of 3 items
The eigenvalues of the canonical tensor to use in calculating the signal.
- n_pointsdipy.core.Sphere class instance
The discrete sphere to use as an approximation for the continuous sphere on which the signal is represented. If integer - we will use an instance of one of the symmetric spheres cached in dps.get_sphere. If a ‘dipy.core.Sphere’ class instance is provided, we will use this object. Default: the
dipy.data
symmetric sphere with 724 vertices
-
calc_signal
(xyz)¶
-
streamline_signal
(streamline)¶ Approximate the signal for a given streamline
-
grad_tensor¶
-
dipy.tracking.life.
grad_tensor
(grad, evals)¶ Calculate the 3 by 3 tensor for a given spatial gradient, given a canonical tensor shape (also as a 3 by 3), pointing at [1,0,0]
- Parameters
- grad1d array of shape (3,)
The spatial gradient (e.g between two nodes of a streamline).
- evals: 1d array of shape (3,)
The eigenvalues of a canonical tensor to be used as a response function.
gradient¶
-
dipy.tracking.life.
gradient
(f)¶ Return the gradient of an N-dimensional array.
The gradient is computed using central differences in the interior and first differences at the boundaries. The returned gradient hence has the same shape as the input array.
- Parameters
- farray_like
An N-dimensional array containing samples of a scalar function.
- Returns
- gradientndarray
N arrays of the same shape as f giving the derivative of f with respect to each dimension.
Notes
This is a simplified implementation of gradient that is part of numpy 1.8. In order to mitigate the effects of changes added to this implementation in version 1.9 of numpy, we include this implementation here.
Examples
>>> x = np.array([1, 2, 4, 7, 11, 16], dtype=np.float) >>> gradient(x) array([ 1. , 1.5, 2.5, 3.5, 4.5, 5. ])
>>> gradient(np.array([[1, 2, 6], [3, 4, 5]], dtype=np.float)) [array([[ 2., 2., -1.], [ 2., 2., -1.]]), array([[ 1. , 2.5, 4. ], [ 1. , 1. , 1. ]])]
streamline_gradients¶
-
dipy.tracking.life.
streamline_gradients
(streamline)¶ Calculate the gradients of the streamline along the spatial dimension
- Parameters
- streamlinearray-like of shape (n, 3)
The 3d coordinates of a single streamline
- Returns
- Array of shape (3, n): Spatial gradients along the length of the
- streamline.
streamline_signal¶
-
dipy.tracking.life.
streamline_signal
(streamline, gtab, evals=[0.001, 0, 0])¶ The signal from a single streamline estimate along each of its nodes.
- Parameters
- streamlinea single streamline
- gtabGradientTable class instance
- evalslist of length 3 (optional. Default: [0.001, 0, 0])
The eigenvalues of the canonical tensor used as an estimate of the signal generated by each node of the streamline.
streamline_tensors¶
-
dipy.tracking.life.
streamline_tensors
(streamline, evals=[0.001, 0, 0])¶ The tensors generated by this fiber.
- Parameters
- streamlinearray-like of shape (n, 3)
The 3d coordinates of a single streamline
- evalsiterable with three entries
The estimated eigenvalues of a single fiber tensor. (default: [0.001, 0, 0]).
- Returns
- An n_nodes by 3 by 3 array with the tensor for each node in the fiber.
Notes
Estimates of the radial/axial diffusivities may rely on empirical measurements (for example, the AD in the Corpus Callosum), or may be based on a biophysical model of some kind.
transform_streamlines¶
-
dipy.tracking.life.
transform_streamlines
(streamlines, mat, in_place=False)¶ Apply affine transformation to streamlines
- Parameters
- streamlinesStreamlines
Streamlines object
- matarray, (4, 4)
transformation matrix
- in_placebool
If True then change data in place. Be careful changes input streamlines.
- Returns
- new_streamlinesStreamlines
Sequence transformed 2D ndarrays of shape[-1]==3
unique_rows¶
-
dipy.tracking.life.
unique_rows
(in_array, dtype='f4')¶ This (quickly) finds the unique rows in an array
- Parameters
- in_array: ndarray
The array for which the unique rows should be found
- dtype: str, optional
This determines the intermediate representation used for the values. Should at least preserve the values of the input array.
- Returns
- u_return: ndarray
Array with the unique rows of the original array.
voxel2streamline¶
-
dipy.tracking.life.
voxel2streamline
(streamline, affine, unique_idx=None)¶ Maps voxels to streamlines and streamlines to voxels, for setting up the LiFE equations matrix
- Parameters
- streamlinelist
A collection of streamlines, each n by 3, with n being the number of nodes in the fiber.
- affinearray_like (4, 4)
The mapping from voxel coordinates to streamline points. The voxel_to_rasmm matrix, typically from a NIFTI file.
- unique_idxarray (optional).
The unique indices in the streamlines
- Returns
- v2f, v2fntuple of dicts
- The first dict in the tuple answers the question: Given a voxel (from
- the unique indices in this model), which fibers pass through it?
- The second answers the question: Given a streamline, for each voxel that
- this streamline passes through, which nodes of that streamline are in that
- voxel?
AnatomicalStoppingCriterion
¶
-
class
dipy.tracking.local_tracking.
AnatomicalStoppingCriterion
¶ Bases:
dipy.tracking.stopping_criterion.StoppingCriterion
Abstract class that takes as input included and excluded tissue maps. The ‘include_map’ defines when the streamline reached a ‘valid’ stopping region (e.g. gray matter partial volume estimation (PVE) map) and the ‘exclude_map’ defines when the streamline reached an ‘invalid’ stopping region (e.g. corticospinal fluid PVE map). The background of the anatomical image should be added to the ‘include_map’ to keep streamlines exiting the brain (e.g. through the brain stem).
- cdef:
double interp_out_double[1] double[:] interp_out_view = interp_out_view double[:, :, :] include_map, exclude_map
Methods
AnatomicalStoppingCriterion from partial volume fraction (PVE) maps.
check_point
get_exclude
get_include
-
__init__
($self, /, *args, **kwargs)¶ Initialize self. See help(type(self)) for accurate signature.
-
from_pve
()¶ AnatomicalStoppingCriterion from partial volume fraction (PVE) maps.
- Parameters
- wm_maparray
The partial volume fraction of white matter at each voxel.
- gm_maparray
The partial volume fraction of gray matter at each voxel.
- csf_maparray
The partial volume fraction of corticospinal fluid at each voxel.
-
get_exclude
()¶
-
get_include
()¶
LocalTracking
¶
-
class
dipy.tracking.local_tracking.
LocalTracking
(direction_getter, stopping_criterion, seeds, affine, step_size, max_cross=None, maxlen=500, fixedstep=True, return_all=True, random_seed=None, save_seeds=False)¶ Bases:
object
-
__init__
(direction_getter, stopping_criterion, seeds, affine, step_size, max_cross=None, maxlen=500, fixedstep=True, return_all=True, random_seed=None, save_seeds=False)¶ Creates streamlines by using local fiber-tracking.
- Parameters
- direction_getterinstance of DirectionGetter
Used to get directions for fiber tracking.
- stopping_criterioninstance of StoppingCriterion
Identifies endpoints and invalid points to inform tracking.
- seedsarray (N, 3)
Points to seed the tracking. Seed points should be given in point space of the track (see
affine
).- affinearray (4, 4)
Coordinate space for the streamline point with respect to voxel indices of input data. This affine can contain scaling, rotational, and translational components but should not contain any shearing. An identity matrix can be used to generate streamlines in “voxel coordinates” as long as isotropic voxels were used to acquire the data.
- step_sizefloat
Step size used for tracking.
- max_crossint or None
The maximum number of direction to track from each seed in crossing voxels. By default all initial directions are tracked.
- maxlenint
Maximum number of steps to track from seed. Used to prevent infinite loops.
- fixedstepbool
If true, a fixed stepsize is used, otherwise a variable step size is used.
- return_allbool
If true, return all generated streamlines, otherwise only streamlines reaching end points or exiting the image.
- random_seedint
The seed for the random seed generator (numpy.random.seed and random.seed).
- save_seedsbool
If True, return seeds alongside streamlines
-
ParticleFilteringTracking
¶
-
class
dipy.tracking.local_tracking.
ParticleFilteringTracking
(direction_getter, stopping_criterion, seeds, affine, step_size, max_cross=None, maxlen=500, pft_back_tracking_dist=2, pft_front_tracking_dist=1, pft_max_trial=20, particle_count=15, return_all=True, random_seed=None, save_seeds=False)¶ Bases:
dipy.tracking.local_tracking.LocalTracking
-
__init__
(direction_getter, stopping_criterion, seeds, affine, step_size, max_cross=None, maxlen=500, pft_back_tracking_dist=2, pft_front_tracking_dist=1, pft_max_trial=20, particle_count=15, return_all=True, random_seed=None, save_seeds=False)¶ A streamline generator using the particle filtering tractography method [1].
- Parameters
- direction_getterinstance of ProbabilisticDirectionGetter
Used to get directions for fiber tracking.
- stopping_criterioninstance of AnatomicalStoppingCriterion
Identifies endpoints and invalid points to inform tracking.
- seedsarray (N, 3)
Points to seed the tracking. Seed points should be given in point space of the track (see
affine
).- affinearray (4, 4)
Coordinate space for the streamline point with respect to voxel indices of input data. This affine can contain scaling, rotational, and translational components but should not contain any shearing. An identity matrix can be used to generate streamlines in “voxel coordinates” as long as isotropic voxels were used to acquire the data.
- step_sizefloat
Step size used for tracking.
- max_crossint or None
The maximum number of direction to track from each seed in crossing voxels. By default all initial directions are tracked.
- maxlenint
Maximum number of steps to track from seed. Used to prevent infinite loops.
- pft_back_tracking_distfloat
Distance in mm to back track before starting the particle filtering tractography. The total particle filtering tractography distance is equal to back_tracking_dist + front_tracking_dist. By default this is set to 2 mm.
- pft_front_tracking_distfloat
Distance in mm to run the particle filtering tractography after the the back track distance. The total particle filtering tractography distance is equal to back_tracking_dist + front_tracking_dist. By default this is set to 1 mm.
- pft_max_trialint
Maximum number of trial for the particle filtering tractography (Prevents infinite loops).
- particle_countint
Number of particles to use in the particle filter.
- return_allbool
If true, return all generated streamlines, otherwise only streamlines reaching end points or exiting the image.
- random_seedint
The seed for the random seed generator (numpy.random.seed and random.seed).
- save_seedsbool
If True, return seeds alongside streamlines
References
-
local_tracker¶
-
dipy.tracking.local_tracking.
local_tracker
()¶ Tracks one direction from a seed.
This function is the main workhorse of the
LocalTracking
class defined indipy.tracking.local_tracking
.- Parameters
- dgDirectionGetter
Used to choosing tracking directions.
- scStoppingCriterion
Used to check the streamline status (e.g. endpoint) along path.
- seed_posarray, float, 1d, (3,)
First point of the (partial) streamline.
- first_steparray, float, 1d, (3,)
Initial seeding direction. Used as
prev_dir
for selecting the step direction from the seed point.- voxel_sizearray, float, 1d, (3,)
Size of voxels in the data set.
- streamlinearray, float, 2d, (N, 3)
Output of tracking will be put into this array. The length of this array,
N
, will set the maximum allowable length of the streamline.- step_sizefloat
Size of tracking steps in mm if
fixed_step
.- fixedstepbool
If true, a fixed step_size is used, otherwise a variable step size is used.
- Returns
- endint
Length of the tracked streamline
- stream_statusStreamlineStatus
Ending state of the streamlines as determined by the StoppingCriterion.
pft_tracker¶
-
dipy.tracking.local_tracking.
pft_tracker
()¶ Tracks one direction from a seed using the particle filtering algorithm.
This function is the main workhorse of the
ParticleFilteringTracking
class defined indipy.tracking.local_tracking
.- Parameters
- dgDirectionGetter
Used to choosing tracking directions.
- scAnatomicalStoppingCriterion
Used to check the streamline status (e.g. endpoint) along path.
- seed_posarray, float, 1d, (3,)
First point of the (partial) streamline.
- first_steparray, float, 1d, (3,)
Initial seeding direction. Used as
prev_dir
for selecting the step direction from the seed point.- voxel_sizearray, float, 1d, (3,)
Size of voxels in the data set.
- streamlinearray, float, 2d, (N, 3)
Output of tracking will be put into this array. The length of this array,
N
, will set the maximum allowable length of the streamline.- directionsarray, float, 2d, (N, 3)
Output of tracking directions will be put into this array. The length of this array,
N
, will set the maximum allowable length of the streamline.- step_sizefloat
Size of tracking steps in mm if
fixed_step
.- pft_max_nbr_back_stepsint
Number of tracking steps to back track before starting the particle filtering tractography.
- pft_max_nbr_front_stepsint
Number of additional tracking steps to track.
- pft_max_trialsint
Maximum number of trials for the particle filtering tractography (Prevents infinite loops).
- particle_countint
Number of particles to use in the particle filter.
- particle_pathsarray, float, 4d, (2, particle_count, pft_max_steps, 3)
Temporary array for paths followed by all particles.
- particle_dirsarray, float, 4d, (2, particle_count, pft_max_steps, 3)
Temporary array for directions followed by particles.
- particle_weightsarray, float, 1d (particle_count)
Temporary array for the weights of particles.
- particle_stepsarray, float, (2, particle_count)
Temporary array for the number of steps of particles.
- particle_stream_statusesarray, float, (2, particle_count)
Temporary array for the stream status of particles.
- Returns
- endint
Length of the tracked streamline
- stream_statusStreamlineStatus
Ending state of the streamlines as determined by the StoppingCriterion.
arbitrarypoint¶
-
dipy.tracking.metrics.
arbitrarypoint
(xyz, distance)¶ Select an arbitrary point along distance on the track (curve)
- Parameters
- xyzarray-like shape (N,3)
array representing x,y,z of N points in a track
- distancefloat
float representing distance travelled from the xyz[0] point of the curve along the curve.
- Returns
- aparray shape (3,)
Arbitrary point of line, such that, if the arbitrary point is not a point in xyz, then we take the interpolation between the two nearest xyz points. If xyz is empty, return a ValueError
Examples
>>> import numpy as np >>> from dipy.tracking.metrics import arbitrarypoint, length >>> theta=np.pi*np.linspace(0,1,100) >>> x=np.cos(theta) >>> y=np.sin(theta) >>> z=0*x >>> xyz=np.vstack((x,y,z)).T >>> ap=arbitrarypoint(xyz,length(xyz)/3)
bytes¶
-
dipy.tracking.metrics.
bytes
(xyz)¶ Size of track in bytes.
- Parameters
- xyzarray-like shape (N,3)
Array representing x,y,z of N points in a track.
- Returns
- bint
Number of bytes.
center_of_mass¶
-
dipy.tracking.metrics.
center_of_mass
(xyz)¶ Center of mass of streamline
- Parameters
- xyzarray-like shape (N,3)
array representing x,y,z of N points in a track
- Returns
- comarray shape (3,)
center of mass of streamline
Examples
>>> from dipy.tracking.metrics import center_of_mass >>> center_of_mass([]) Traceback (most recent call last): ... ValueError: xyz array cannot be empty >>> center_of_mass([[1,1,1]]) array([ 1., 1., 1.]) >>> xyz = np.array([[0,0,0],[1,1,1],[2,2,2]]) >>> center_of_mass(xyz) array([ 1., 1., 1.])
downsample¶
-
dipy.tracking.metrics.
downsample
(xyz, n_pols=3)¶ downsample for a specific number of points along the curve/track
Uses the length of the curve. It works in a similar fashion to midpoint and arbitrarypoint but it also reduces the number of segments of a track.
- Parameters
- xyzarray-like shape (N,3)
array representing x,y,z of N points in a track
- n_polint
integer representing number of points (poles) we need along the curve.
- Returns
- xyz2array shape (M,3)
array representing x,y,z of M points that where extrapolated. M should be equal to n_pols
Examples
>>> import numpy as np >>> # a semi-circle >>> theta=np.pi*np.linspace(0,1,100) >>> x=np.cos(theta) >>> y=np.sin(theta) >>> z=0*x >>> xyz=np.vstack((x,y,z)).T >>> xyz2=downsample(xyz,3) >>> # a cosine >>> x=np.pi*np.linspace(0,1,100) >>> y=np.cos(theta) >>> z=0*y >>> xyz=np.vstack((x,y,z)).T >>> _= downsample(xyz,3) >>> len(xyz2) 3 >>> xyz3=downsample(xyz,10) >>> len(xyz3) 10
endpoint¶
-
dipy.tracking.metrics.
endpoint
(xyz)¶ - Parameters
- xyzarray, shape(N,3)
Track.
- Returns
- eparray, shape(3,)
First track point.
Examples
>>> from dipy.tracking.metrics import endpoint >>> import numpy as np >>> theta=np.pi*np.linspace(0,1,100) >>> x=np.cos(theta) >>> y=np.sin(theta) >>> z=0*x >>> xyz=np.vstack((x,y,z)).T >>> ep=endpoint(xyz) >>> ep.any()==xyz[-1].any() True
frenet_serret¶
-
dipy.tracking.metrics.
frenet_serret
(xyz)¶ Frenet-Serret Space Curve Invariants
Calculates the 3 vector and 2 scalar invariants of a space curve defined by vectors r = (x,y,z). If z is omitted (i.e. the array xyz has shape (N,2)), then the curve is only 2D (planar), but the equations are still valid.
Similar to http://www.mathworks.com/matlabcentral/fileexchange/11169
In the following equations the prime (\('\)) indicates differentiation with respect to the parameter \(s\) of a parametrised curve \(\mathbf{r}(s)\).
\(\mathbf{T}=\mathbf{r'}/|\mathbf{r'}|\qquad\) (Tangent vector)}
\(\mathbf{N}=\mathbf{T'}/|\mathbf{T'}|\qquad\) (Normal vector)
\(\mathbf{B}=\mathbf{T}\times\mathbf{N}\qquad\) (Binormal vector)
\(\kappa=|\mathbf{T'}|\qquad\) (Curvature)
\(\mathrm{\tau}=-\mathbf{B'}\cdot\mathbf{N}\) (Torsion)
- Parameters
- xyzarray-like shape (N,3)
array representing x,y,z of N points in a track
- Returns
- Tarray shape (N,3)
array representing the tangent of the curve xyz
- Narray shape (N,3)
array representing the normal of the curve xyz
- Barray shape (N,3)
array representing the binormal of the curve xyz
- karray shape (N,1)
array representing the curvature of the curve xyz
- tarray shape (N,1)
array representing the torsion of the curve xyz
Examples
Create a helix and calculate its tangent, normal, binormal, curvature and torsion
>>> from dipy.tracking import metrics as tm >>> import numpy as np >>> theta = 2*np.pi*np.linspace(0,2,100) >>> x=np.cos(theta) >>> y=np.sin(theta) >>> z=theta/(2*np.pi) >>> xyz=np.vstack((x,y,z)).T >>> T,N,B,k,t=tm.frenet_serret(xyz)
generate_combinations¶
-
dipy.tracking.metrics.
generate_combinations
(items, n)¶ Combine sets of size n from items
- Parameters
- itemssequence
- nint
- Returns
- iciterator
Examples
>>> from dipy.tracking.metrics import generate_combinations >>> ic=generate_combinations(range(3),2) >>> for i in ic: print(i) [0, 1] [0, 2] [1, 2]
inside_sphere¶
-
dipy.tracking.metrics.
inside_sphere
(xyz, center, radius)¶ If any point of the track is inside a sphere of a specified center and radius return True otherwise False. Mathematicaly this can be simply described by \(|x-c|\le r\) where \(x\) a point \(c\) the center of the sphere and \(r\) the radius of the sphere.
- Parameters
- xyzarray, shape (N,3)
representing x,y,z of the N points of the track
- centerarray, shape (3,)
center of the sphere
- radiusfloat
radius of the sphere
- Returns
- tf{True,False}
Whether point is inside sphere.
Examples
>>> from dipy.tracking.metrics import inside_sphere >>> line=np.array(([0,0,0],[1,1,1],[2,2,2])) >>> sph_cent=np.array([1,1,1]) >>> sph_radius = 1 >>> inside_sphere(line,sph_cent,sph_radius) True
inside_sphere_points¶
-
dipy.tracking.metrics.
inside_sphere_points
(xyz, center, radius)¶ If a track intersects with a sphere of a specified center and radius return the points that are inside the sphere otherwise False. Mathematicaly this can be simply described by \(|x-c| \le r\) where \(x\) a point \(c\) the center of the sphere and \(r\) the radius of the sphere.
- Parameters
- xyzarray, shape (N,3)
representing x,y,z of the N points of the track
- centerarray, shape (3,)
center of the sphere
- radiusfloat
radius of the sphere
- Returns
- xyznarray, shape(M,3)
array representing x,y,z of the M points inside the sphere
Examples
>>> from dipy.tracking.metrics import inside_sphere_points >>> line=np.array(([0,0,0],[1,1,1],[2,2,2])) >>> sph_cent=np.array([1,1,1]) >>> sph_radius = 1 >>> inside_sphere_points(line,sph_cent,sph_radius) array([[1, 1, 1]])
intersect_sphere¶
-
dipy.tracking.metrics.
intersect_sphere
(xyz, center, radius)¶ If any segment of the track is intersecting with a sphere of specific center and radius return True otherwise False
- Parameters
- xyzarray, shape (N,3)
representing x,y,z of the N points of the track
- centerarray, shape (3,)
center of the sphere
- radiusfloat
radius of the sphere
- Returns
- tf{True, False}
True if track xyz intersects sphere
- >>> from dipy.tracking.metrics import intersect_sphere
- >>> line=np.array(([0,0,0],[1,1,1],[2,2,2]))
- >>> sph_cent=np.array([1,1,1])
- >>> sph_radius = 1
- >>> intersect_sphere(line,sph_cent,sph_radius)
- True
Notes
The ray to sphere intersection method used here is similar with http://local.wasp.uwa.edu.au/~pbourke/geometry/sphereline/ http://local.wasp.uwa.edu.au/~pbourke/geometry/sphereline/source.cpp we just applied it for every segment neglecting the intersections where the intersecting points are not inside the segment
length¶
-
dipy.tracking.metrics.
length
(xyz, along=False)¶ Euclidean length of track line
This will give length in mm if tracks are expressed in world coordinates.
- Parameters
- xyzarray-like shape (N,3)
array representing x,y,z of N points in a track
- alongbool, optional
If True, return array giving cumulative length along track, otherwise (default) return scalar giving total length.
- Returns
- Lscalar or array shape (N-1,)
scalar in case of along == False, giving total length, array if along == True, giving cumulative lengths.
Examples
>>> from dipy.tracking.metrics import length >>> xyz = np.array([[1,1,1],[2,3,4],[0,0,0]]) >>> expected_lens = np.sqrt([1+2**2+3**2, 2**2+3**2+4**2]) >>> length(xyz) == expected_lens.sum() True >>> len_along = length(xyz, along=True) >>> np.allclose(len_along, expected_lens.cumsum()) True >>> length([]) 0 >>> length([[1, 2, 3]]) 0 >>> length([], along=True) array([0])
longest_track_bundle¶
-
dipy.tracking.metrics.
longest_track_bundle
(bundle, sort=False)¶ Return longest track or length sorted track indices in bundle
If sort == True, return the indices of the sorted tracks in the bundle, otherwise return the longest track.
- Parameters
- bundlesequence
of tracks as arrays, shape (N1,3) … (Nm,3)
- sortbool, optional
If False (default) return longest track. If True, return length sorted indices for tracks in bundle
- Returns
- longest_or_indicesarray
longest track - shape (N,3) - (if sort is False), or indices of length sorted tracks (if sort is True)
Examples
>>> from dipy.tracking.metrics import longest_track_bundle >>> import numpy as np >>> bundle = [np.array([[0,0,0],[2,2,2]]),np.array([[0,0,0],[4,4,4]])] >>> longest_track_bundle(bundle) array([[0, 0, 0], [4, 4, 4]]) >>> longest_track_bundle(bundle, True) #doctest: +ELLIPSIS array([0, 1]...)
mean_curvature¶
-
dipy.tracking.metrics.
mean_curvature
(xyz)¶ Calculates the mean curvature of a curve
- Parameters
- xyzarray-like shape (N,3)
array representing x,y,z of N points in a curve
- Returns
- mfloat
Mean curvature.
Examples
Create a straight line and a semi-circle and print their mean curvatures
>>> from dipy.tracking import metrics as tm >>> import numpy as np >>> x=np.linspace(0,1,100) >>> y=0*x >>> z=0*x >>> xyz=np.vstack((x,y,z)).T >>> m=tm.mean_curvature(xyz) #mean curvature straight line >>> theta=np.pi*np.linspace(0,1,100) >>> x=np.cos(theta) >>> y=np.sin(theta) >>> z=0*x >>> xyz=np.vstack((x,y,z)).T >>> _= tm.mean_curvature(xyz) #mean curvature for semi-circle
mean_orientation¶
-
dipy.tracking.metrics.
mean_orientation
(xyz)¶ Calculates the mean orientation of a curve
- Parameters
- xyzarray-like shape (N,3)
array representing x,y,z of N points in a curve
- Returns
- mfloat
Mean orientation.
midpoint¶
-
dipy.tracking.metrics.
midpoint
(xyz)¶ Midpoint of track
- Parameters
- xyzarray-like shape (N,3)
array representing x,y,z of N points in a track
- Returns
- mparray shape (3,)
Middle point of line, such that, if L is the line length then np is the point such that the length xyz[0] to mp and from mp to xyz[-1] is L/2. If the middle point is not a point in xyz, then we take the interpolation between the two nearest xyz points. If xyz is empty, return a ValueError
Examples
>>> from dipy.tracking.metrics import midpoint >>> midpoint([]) Traceback (most recent call last): ... ValueError: xyz array cannot be empty >>> midpoint([[1, 2, 3]]) array([1, 2, 3]) >>> xyz = np.array([[1,1,1],[2,3,4]]) >>> midpoint(xyz) array([ 1.5, 2. , 2.5]) >>> xyz = np.array([[0,0,0],[1,1,1],[2,2,2]]) >>> midpoint(xyz) array([ 1., 1., 1.]) >>> xyz = np.array([[0,0,0],[1,0,0],[3,0,0]]) >>> midpoint(xyz) array([ 1.5, 0. , 0. ]) >>> xyz = np.array([[0,9,7],[1,9,7],[3,9,7]]) >>> midpoint(xyz) array([ 1.5, 9. , 7. ])
midpoint2point¶
-
dipy.tracking.metrics.
midpoint2point
(xyz, p)¶ Calculate distance from midpoint of a curve to arbitrary point p
- Parameters
- xyzarray-like shape (N,3)
array representing x,y,z of N points in a track
- parray shape (3,)
array representing an arbitrary point with x,y,z coordinates in space.
- Returns
- dfloat
a float number representing Euclidean distance
Examples
>>> import numpy as np >>> from dipy.tracking.metrics import midpoint2point, midpoint >>> theta=np.pi*np.linspace(0,1,100) >>> x=np.cos(theta) >>> y=np.sin(theta) >>> z=0*x >>> xyz=np.vstack((x,y,z)).T >>> dist=midpoint2point(xyz,np.array([0,0,0]))
principal_components¶
-
dipy.tracking.metrics.
principal_components
(xyz)¶ We use PCA to calculate the 3 principal directions for a track
- Parameters
- xyzarray-like shape (N,3)
array representing x,y,z of N points in a track
- Returns
- vaarray_like
eigenvalues
- vearray_like
eigenvectors
Examples
>>> import numpy as np >>> from dipy.tracking.metrics import principal_components >>> theta=np.pi*np.linspace(0,1,100) >>> x=np.cos(theta) >>> y=np.sin(theta) >>> z=0*x >>> xyz=np.vstack((x,y,z)).T >>> va, ve = principal_components(xyz) >>> np.allclose(va, [0.51010101, 0.09883545, 0]) True
splev¶
-
dipy.tracking.metrics.
splev
(x, tck, der=0, ext=0)¶ Evaluate a B-spline or its derivatives.
Given the knots and coefficients of a B-spline representation, evaluate the value of the smoothing polynomial and its derivatives. This is a wrapper around the FORTRAN routines splev and splder of FITPACK.
- Parameters
- xarray_like
An array of points at which to return the value of the smoothed spline or its derivatives. If tck was returned from splprep, then the parameter values, u should be given.
- tck3-tuple or a BSpline object
If a tuple, then it should be a sequence of length 3 returned by splrep or splprep containing the knots, coefficients, and degree of the spline. (Also see Notes.)
- derint, optional
The order of derivative of the spline to compute (must be less than or equal to k).
- extint, optional
Controls the value returned for elements of
x
not in the interval defined by the knot sequence.if ext=0, return the extrapolated value.
if ext=1, return 0
if ext=2, raise a ValueError
if ext=3, return the boundary value.
The default value is 0.
- Returns
- yndarray or list of ndarrays
An array of values representing the spline function evaluated at the points in x. If tck was returned from splprep, then this is a list of arrays representing the curve in N-dimensional space.
See also
splprep
,splrep
,sproot
,spalde
,splint
,bisplrep
,bisplev
,BSpline
Notes
Manipulating the tck-tuples directly is not recommended. In new code, prefer using BSpline objects.
References
- 1
C. de Boor, “On calculating with b-splines”, J. Approximation Theory, 6, p.50-62, 1972.
- 2
M. G. Cox, “The numerical evaluation of b-splines”, J. Inst. Maths Applics, 10, p.134-149, 1972.
- 3
P. Dierckx, “Curve and surface fitting with splines”, Monographs on Numerical Analysis, Oxford University Press, 1993.
spline¶
-
dipy.tracking.metrics.
spline
(xyz, s=3, k=2, nest=-1)¶ Generate B-splines as documented in http://www.scipy.org/Cookbook/Interpolation
The scipy.interpolate packages wraps the netlib FITPACK routines (Dierckx) for calculating smoothing splines for various kinds of data and geometries. Although the data is evenly spaced in this example, it need not be so to use this routine.
- Parameters
- xyzarray, shape (N,3)
array representing x,y,z of N points in 3d space
- sfloat, optional
A smoothing condition. The amount of smoothness is determined by satisfying the conditions: sum((w * (y - g))**2,axis=0) <= s where g(x) is the smoothed interpolation of (x,y). The user can use s to control the tradeoff between closeness and smoothness of fit. Larger satisfying the conditions: sum((w * (y - g))**2,axis=0) <= s where g(x) is the smoothed interpolation of (x,y). The user can use s to control the tradeoff between closeness and smoothness of fit. Larger s means more smoothing while smaller values of s indicate less smoothing. Recommended values of s depend on the weights, w. If the weights represent the inverse of the standard-deviation of y, then a: good s value should be found in the range (m-sqrt(2*m),m+sqrt(2*m)) where m is the number of datapoints in x, y, and w.
- kint, optional
Degree of the spline. Cubic splines are recommended. Even values of k should be avoided especially with a small s-value. for the same set of data. If task=-1 find the weighted least square spline for a given set of knots, t.
- nestNone or int, optional
An over-estimate of the total number of knots of the spline to help in determining the storage space. None results in value m+2*k. -1 results in m+k+1. Always large enough is nest=m+k+1. Default is -1.
- Returns
- xyznarray, shape (M,3)
array representing x,y,z of the M points inside the sphere
See also
scipy.interpolate.splprep
,scipy.interpolate.splev
Examples
>>> import numpy as np >>> t=np.linspace(0,1.75*2*np.pi,100)# make ascending spiral in 3-space >>> x = np.sin(t) >>> y = np.cos(t) >>> z = t >>> x+= np.random.normal(scale=0.1, size=x.shape) # add noise >>> y+= np.random.normal(scale=0.1, size=y.shape) >>> z+= np.random.normal(scale=0.1, size=z.shape) >>> xyz=np.vstack((x,y,z)).T >>> xyzn=spline(xyz,3,2,-1) >>> len(xyzn) > len(xyz) True
splprep¶
-
dipy.tracking.metrics.
splprep
(x, w=None, u=None, ub=None, ue=None, k=3, task=0, s=None, t=None, full_output=0, nest=None, per=0, quiet=1)¶ Find the B-spline representation of an N-dimensional curve.
Given a list of N rank-1 arrays, x, which represent a curve in N-dimensional space parametrized by u, find a smooth approximating spline curve g(u). Uses the FORTRAN routine parcur from FITPACK.
- Parameters
- xarray_like
A list of sample vector arrays representing the curve.
- warray_like, optional
Strictly positive rank-1 array of weights the same length as x[0]. The weights are used in computing the weighted least-squares spline fit. If the errors in the x values have standard-deviation given by the vector d, then w should be 1/d. Default is
ones(len(x[0]))
.- uarray_like, optional
An array of parameter values. If not given, these values are calculated automatically as
M = len(x[0])
, wherev[0] = 0
v[i] = v[i-1] + distance(x[i], x[i-1])
u[i] = v[i] / v[M-1]
- ub, ueint, optional
The end-points of the parameters interval. Defaults to u[0] and u[-1].
- kint, optional
Degree of the spline. Cubic splines are recommended. Even values of k should be avoided especially with a small s-value.
1 <= k <= 5
, default is 3.- taskint, optional
If task==0 (default), find t and c for a given smoothing factor, s. If task==1, find t and c for another value of the smoothing factor, s. There must have been a previous call with task=0 or task=1 for the same set of data. If task=-1 find the weighted least square spline for a given set of knots, t.
- sfloat, optional
A smoothing condition. The amount of smoothness is determined by satisfying the conditions:
sum((w * (y - g))**2,axis=0) <= s
, where g(x) is the smoothed interpolation of (x,y). The user can use s to control the trade-off between closeness and smoothness of fit. Larger s means more smoothing while smaller values of s indicate less smoothing. Recommended values of s depend on the weights, w. If the weights represent the inverse of the standard-deviation of y, then a good s value should be found in the range(m-sqrt(2*m),m+sqrt(2*m))
, where m is the number of data points in x, y, and w.- tint, optional
The knots needed for task=-1.
- full_outputint, optional
If non-zero, then return optional outputs.
- nestint, optional
An over-estimate of the total number of knots of the spline to help in determining the storage space. By default nest=m/2. Always large enough is nest=m+k+1.
- perint, optional
If non-zero, data points are considered periodic with period
x[m-1] - x[0]
and a smooth periodic spline approximation is returned. Values ofy[m-1]
andw[m-1]
are not used.- quietint, optional
Non-zero to suppress messages. This parameter is deprecated; use standard Python warning filters instead.
- Returns
- tcktuple
(t,c,k) a tuple containing the vector of knots, the B-spline coefficients, and the degree of the spline.
- uarray
An array of the values of the parameter.
- fpfloat
The weighted sum of squared residuals of the spline approximation.
- ierint
An integer flag about splrep success. Success is indicated if ier<=0. If ier in [1,2,3] an error occurred but was not raised. Otherwise an error is raised.
- msgstr
A message corresponding to the integer flag, ier.
See also
splrep
,splev
,sproot
,spalde
,splint
,bisplrep
,bisplev
,UnivariateSpline
,BivariateSpline
,BSpline
,make_interp_spline
Notes
See splev for evaluation of the spline and its derivatives. The number of dimensions N must be smaller than 11.
The number of coefficients in the c array is
k+1
less then the number of knots,len(t)
. This is in contrast with splrep, which zero-pads the array of coefficients to have the same length as the array of knots. These additional coefficients are ignored by evaluation routines, splev and BSpline.References
- 1
P. Dierckx, “Algorithms for smoothing data with periodic and parametric splines, Computer Graphics and Image Processing”, 20 (1982) 171-184.
- 2
P. Dierckx, “Algorithms for smoothing data with periodic and parametric splines”, report tw55, Dept. Computer Science, K.U.Leuven, 1981.
- 3
P. Dierckx, “Curve and surface fitting with splines”, Monographs on Numerical Analysis, Oxford University Press, 1993.
Examples
Generate a discretization of a limacon curve in the polar coordinates:
>>> phi = np.linspace(0, 2.*np.pi, 40) >>> r = 0.5 + np.cos(phi) # polar coords >>> x, y = r * np.cos(phi), r * np.sin(phi) # convert to cartesian
And interpolate:
>>> from scipy.interpolate import splprep, splev >>> tck, u = splprep([x, y], s=0) >>> new_points = splev(u, tck)
Notice that (i) we force interpolation by using s=0, (ii) the parameterization,
u
, is generated automatically. Now plot the result:>>> import matplotlib.pyplot as plt >>> fig, ax = plt.subplots() >>> ax.plot(x, y, 'ro') >>> ax.plot(new_points[0], new_points[1], 'r-') >>> plt.show()
startpoint¶
-
dipy.tracking.metrics.
startpoint
(xyz)¶ First point of the track
- Parameters
- xyzarray, shape(N,3)
Track.
- Returns
- sparray, shape(3,)
First track point.
Examples
>>> from dipy.tracking.metrics import startpoint >>> import numpy as np >>> theta=np.pi*np.linspace(0,1,100) >>> x=np.cos(theta) >>> y=np.sin(theta) >>> z=0*x >>> xyz=np.vstack((x,y,z)).T >>> sp=startpoint(xyz) >>> sp.any()==xyz[0].any() True
winding¶
-
dipy.tracking.metrics.
winding
(xyz)¶ Total turning angle projected.
Project space curve to best fitting plane. Calculate the cumulative signed angle between each line segment and the previous one.
- Parameters
- xyzarray-like shape (N,3)
Array representing x,y,z of N points in a track.
- Returns
- ascalar
Total turning angle in degrees.
Streamlines
¶
-
dipy.tracking.streamline.
Streamlines
¶ alias of
nibabel.streamlines.array_sequence.ArraySequence
apply_affine¶
-
dipy.tracking.streamline.
apply_affine
(aff, pts)¶ Apply affine matrix aff to points pts
Returns result of application of aff to the right of pts. The coordinate dimension of pts should be the last.
For the 3D case, aff will be shape (4,4) and pts will have final axis length 3 - maybe it will just be N by 3. The return value is the transformed points, in this case:
res = np.dot(aff[:3,:3], pts.T) + aff[:3,3:4] transformed_pts = res.T
This routine is more general than 3D, in that aff can have any shape (N,N), and pts can have any shape, as long as the last dimension is for the coordinates, and is therefore length N-1.
- Parameters
- aff(N, N) array-like
Homogenous affine, for 3D points, will be 4 by 4. Contrary to first appearance, the affine will be applied on the left of pts.
- pts(…, N-1) array-like
Points, where the last dimension contains the coordinates of each point. For 3D, the last dimension will be length 3.
- Returns
- transformed_pts(…, N-1) array
transformed points
Examples
>>> aff = np.array([[0,2,0,10],[3,0,0,11],[0,0,4,12],[0,0,0,1]]) >>> pts = np.array([[1,2,3],[2,3,4],[4,5,6],[6,7,8]]) >>> apply_affine(aff, pts) #doctest: +ELLIPSIS array([[14, 14, 24], [16, 17, 28], [20, 23, 36], [24, 29, 44]]...)
Just to show that in the simple 3D case, it is equivalent to:
>>> (np.dot(aff[:3,:3], pts.T) + aff[:3,3:4]).T #doctest: +ELLIPSIS array([[14, 14, 24], [16, 17, 28], [20, 23, 36], [24, 29, 44]]...)
But pts can be a more complicated shape:
>>> pts = pts.reshape((2,2,3)) >>> apply_affine(aff, pts) #doctest: +ELLIPSIS array([[[14, 14, 24], [16, 17, 28]], <BLANKLINE> [[20, 23, 36], [24, 29, 44]]]...)
bundles_distances_mdf¶
-
dipy.tracking.streamline.
bundles_distances_mdf
()¶ Calculate distances between list of tracks A and list of tracks B
All tracks need to have the same number of points
- Parameters
- tracksAsequence
of tracks as arrays, [(N,3) .. (N,3)]
- tracksBsequence
of tracks as arrays, [(N,3) .. (N,3)]
- Returns
- DMarray, shape (len(tracksA), len(tracksB))
distances between tracksA and tracksB according to metric
See also
dipy.metrics.downsample
cdist¶
-
dipy.tracking.streamline.
cdist
(XA, XB, metric='euclidean', *args, **kwargs)¶ Compute distance between each pair of the two collections of inputs.
See Notes for common calling conventions.
- Parameters
- XAndarray
An \(m_A\) by \(n\) array of \(m_A\) original observations in an \(n\)-dimensional space. Inputs are converted to float type.
- XBndarray
An \(m_B\) by \(n\) array of \(m_B\) original observations in an \(n\)-dimensional space. Inputs are converted to float type.
- metricstr or callable, optional
The distance metric to use. If a string, the distance function can be ‘braycurtis’, ‘canberra’, ‘chebyshev’, ‘cityblock’, ‘correlation’, ‘cosine’, ‘dice’, ‘euclidean’, ‘hamming’, ‘jaccard’, ‘kulsinski’, ‘mahalanobis’, ‘matching’, ‘minkowski’, ‘rogerstanimoto’, ‘russellrao’, ‘seuclidean’, ‘sokalmichener’, ‘sokalsneath’, ‘sqeuclidean’, ‘wminkowski’, ‘yule’.
- *argstuple. Deprecated.
Additional arguments should be passed as keyword arguments
- **kwargsdict, optional
Extra arguments to metric: refer to each metric documentation for a list of all possible arguments.
Some possible arguments:
p : scalar The p-norm to apply for Minkowski, weighted and unweighted. Default: 2.
w : ndarray The weight vector for metrics that support weights (e.g., Minkowski).
V : ndarray The variance vector for standardized Euclidean. Default: var(vstack([XA, XB]), axis=0, ddof=1)
VI : ndarray The inverse of the covariance matrix for Mahalanobis. Default: inv(cov(vstack([XA, XB].T))).T
out : ndarray The output array If not None, the distance matrix Y is stored in this array. Note: metric independent, it will become a regular keyword arg in a future scipy version
- Returns
- Yndarray
A \(m_A\) by \(m_B\) distance matrix is returned. For each \(i\) and \(j\), the metric
dist(u=XA[i], v=XB[j])
is computed and stored in the \(ij\) th entry.
- Raises
- ValueError
An exception is thrown if XA and XB do not have the same number of columns.
Notes
The following are common calling conventions:
Y = cdist(XA, XB, 'euclidean')
Computes the distance between \(m\) points using Euclidean distance (2-norm) as the distance metric between the points. The points are arranged as \(m\) \(n\)-dimensional row vectors in the matrix X.
Y = cdist(XA, XB, 'minkowski', p=2.)
Computes the distances using the Minkowski distance \(||u-v||_p\) (\(p\)-norm) where \(p \geq 1\).
Y = cdist(XA, XB, 'cityblock')
Computes the city block or Manhattan distance between the points.
Y = cdist(XA, XB, 'seuclidean', V=None)
Computes the standardized Euclidean distance. The standardized Euclidean distance between two n-vectors
u
andv
is\[\sqrt{\sum {(u_i-v_i)^2 / V[x_i]}}.\]V is the variance vector; V[i] is the variance computed over all the i’th components of the points. If not passed, it is automatically computed.
Y = cdist(XA, XB, 'sqeuclidean')
Computes the squared Euclidean distance \(||u-v||_2^2\) between the vectors.
Y = cdist(XA, XB, 'cosine')
Computes the cosine distance between vectors u and v,
\[1 - \frac{u \cdot v} {{||u||}_2 {||v||}_2}\]where \(||*||_2\) is the 2-norm of its argument
*
, and \(u \cdot v\) is the dot product of \(u\) and \(v\).Y = cdist(XA, XB, 'correlation')
Computes the correlation distance between vectors u and v. This is
\[1 - \frac{(u - \bar{u}) \cdot (v - \bar{v})} {{||(u - \bar{u})||}_2 {||(v - \bar{v})||}_2}\]where \(\bar{v}\) is the mean of the elements of vector v, and \(x \cdot y\) is the dot product of \(x\) and \(y\).
Y = cdist(XA, XB, 'hamming')
Computes the normalized Hamming distance, or the proportion of those vector elements between two n-vectors
u
andv
which disagree. To save memory, the matrixX
can be of type boolean.Y = cdist(XA, XB, 'jaccard')
Computes the Jaccard distance between the points. Given two vectors,
u
andv
, the Jaccard distance is the proportion of those elementsu[i]
andv[i]
that disagree where at least one of them is non-zero.Y = cdist(XA, XB, 'chebyshev')
Computes the Chebyshev distance between the points. The Chebyshev distance between two n-vectors
u
andv
is the maximum norm-1 distance between their respective elements. More precisely, the distance is given by\[d(u,v) = \max_i {|u_i-v_i|}.\]Y = cdist(XA, XB, 'canberra')
Computes the Canberra distance between the points. The Canberra distance between two points
u
andv
is\[d(u,v) = \sum_i \frac{|u_i-v_i|} {|u_i|+|v_i|}.\]Y = cdist(XA, XB, 'braycurtis')
Computes the Bray-Curtis distance between the points. The Bray-Curtis distance between two points
u
andv
is\[d(u,v) = \frac{\sum_i (|u_i-v_i|)} {\sum_i (|u_i+v_i|)}\]Y = cdist(XA, XB, 'mahalanobis', VI=None)
Computes the Mahalanobis distance between the points. The Mahalanobis distance between two points
u
andv
is \(\sqrt{(u-v)(1/V)(u-v)^T}\) where \((1/V)\) (theVI
variable) is the inverse covariance. IfVI
is not None,VI
will be used as the inverse covariance matrix.Y = cdist(XA, XB, 'yule')
Computes the Yule distance between the boolean vectors. (see yule function documentation)
Y = cdist(XA, XB, 'matching')
Synonym for ‘hamming’.
Y = cdist(XA, XB, 'dice')
Computes the Dice distance between the boolean vectors. (see dice function documentation)
Y = cdist(XA, XB, 'kulsinski')
Computes the Kulsinski distance between the boolean vectors. (see kulsinski function documentation)
Y = cdist(XA, XB, 'rogerstanimoto')
Computes the Rogers-Tanimoto distance between the boolean vectors. (see rogerstanimoto function documentation)
Y = cdist(XA, XB, 'russellrao')
Computes the Russell-Rao distance between the boolean vectors. (see russellrao function documentation)
Y = cdist(XA, XB, 'sokalmichener')
Computes the Sokal-Michener distance between the boolean vectors. (see sokalmichener function documentation)
Y = cdist(XA, XB, 'sokalsneath')
Computes the Sokal-Sneath distance between the vectors. (see sokalsneath function documentation)
Y = cdist(XA, XB, 'wminkowski', p=2., w=w)
Computes the weighted Minkowski distance between the vectors. (see wminkowski function documentation)
Y = cdist(XA, XB, f)
Computes the distance between all pairs of vectors in X using the user supplied 2-arity function f. For example, Euclidean distance between the vectors could be computed as follows:
dm = cdist(XA, XB, lambda u, v: np.sqrt(((u-v)**2).sum()))
Note that you should avoid passing a reference to one of the distance functions defined in this library. For example,:
dm = cdist(XA, XB, sokalsneath)
would calculate the pair-wise distances between the vectors in X using the Python function sokalsneath. This would result in sokalsneath being called \({n \choose 2}\) times, which is inefficient. Instead, the optimized C version is more efficient, and we call it using the following syntax:
dm = cdist(XA, XB, 'sokalsneath')
Examples
Find the Euclidean distances between four 2-D coordinates:
>>> from scipy.spatial import distance >>> coords = [(35.0456, -85.2672), ... (35.1174, -89.9711), ... (35.9728, -83.9422), ... (36.1667, -86.7833)] >>> distance.cdist(coords, coords, 'euclidean') array([[ 0. , 4.7044, 1.6172, 1.8856], [ 4.7044, 0. , 6.0893, 3.3561], [ 1.6172, 6.0893, 0. , 2.8477], [ 1.8856, 3.3561, 2.8477, 0. ]])
Find the Manhattan distance from a 3-D point to the corners of the unit cube:
>>> a = np.array([[0, 0, 0], ... [0, 0, 1], ... [0, 1, 0], ... [0, 1, 1], ... [1, 0, 0], ... [1, 0, 1], ... [1, 1, 0], ... [1, 1, 1]]) >>> b = np.array([[ 0.1, 0.2, 0.4]]) >>> distance.cdist(a, b, 'cityblock') array([[ 0.7], [ 0.9], [ 1.3], [ 1.5], [ 1.5], [ 1.7], [ 2.1], [ 2.3]])
center_streamlines¶
-
dipy.tracking.streamline.
center_streamlines
(streamlines)¶ Move streamlines to the origin
- Parameters
- streamlineslist
List of 2D ndarrays of shape[-1]==3
- Returns
- new_streamlineslist
List of 2D ndarrays of shape[-1]==3
- inv_shiftndarray
Translation in x,y,z to go back in the initial position
cluster_confidence¶
-
dipy.tracking.streamline.
cluster_confidence
(streamlines, max_mdf=5, subsample=12, power=1, override=False)¶ Computes the cluster confidence index (cci), which is an estimation of the support a set of streamlines gives to a particular pathway.
Ex: A single streamline with no others in the dataset following a similar pathway has a low cci. A streamline in a bundle of 100 streamlines that follow similar pathways has a high cci.
See: Jordan et al. 2017 (Based on streamline MDF distance from Garyfallidis et al. 2012)
- Parameters
- streamlineslist of 2D (N, 3) arrays
A sequence of streamlines of length N (# streamlines)
- max_mdfint
The maximum MDF distance (mm) that will be considered a “supporting” streamline and included in cci calculation
- subsample: int
The number of points that are considered for each streamline in the calculation. To save on calculation time, each streamline is subsampled to subsampleN points.
- power: int
The power to which the MDF distance for each streamline will be raised to determine how much it contributes to the cci. High values of power make the contribution value degrade much faster. E.g., a streamline with 5mm MDF similarity contributes 1/5 to the cci if power is 1, but only contributes 1/5^2 = 1/25 if power is 2.
- override: bool, False by default
override means that the cci calculation will still occur even though there are short streamlines in the dataset that may alter expected behaviour.
- Returns
- Returns an array of CCI scores
References
[Jordan17] Jordan K. Et al., Cluster Confidence Index: A Streamline-Wise Pathway Reproducibility Metric for Diffusion-Weighted MRI Tractography, Journal of Neuroimaging, vol 28, no 1, 2017.
[Garyfallidis12] Garyfallidis E. et al., QuickBundles a method for tractography simplification, Frontiers in Neuroscience, vol 6, no 175, 2012.
compress_streamlines¶
-
dipy.tracking.streamline.
compress_streamlines
()¶ Compress streamlines by linearization as in [Presseau15].
The compression consists in merging consecutive segments that are nearly collinear. The merging is achieved by removing the point the two segments have in common.
The linearization process [Presseau15] ensures that every point being removed are within a certain margin (in mm) of the resulting streamline. Recommendations for setting this margin can be found in [Presseau15] (in which they called it tolerance error).
The compression also ensures that two consecutive points won’t be too far from each other (precisely less or equal than `max_segment_length`mm). This is a tradeoff to speed up the linearization process [Rheault15]. A low value will result in a faster linearization but low compression, whereas a high value will result in a slower linearization but high compression.
- Parameters
- streamlinesone or a list of array-like of shape (N,3)
Array representing x,y,z of N points in a streamline.
- tol_errorfloat (optional)
Tolerance error in mm (default: 0.01). A rule of thumb is to set it to 0.01mm for deterministic streamlines and 0.1mm for probabilitic streamlines.
- max_segment_lengthfloat (optional)
Maximum length in mm of any given segment produced by the compression. The default is 10mm. (In [Presseau15], they used a value of np.inf).
- Returns
- compressed_streamlinesone or a list of array-like
Results of the linearization process.
Notes
Be aware that compressed streamlines have variable step sizes. One needs to be careful when computing streamlines-based metrics [Houde15].
References
- Presseau15(1,2,3,4,5,6)
Presseau C. et al., A new compression format for fiber tracking datasets, NeuroImage, no 109, 73-83, 2015.
- Rheault15(1,2)
Rheault F. et al., Real Time Interaction with Millions of Streamlines, ISMRM, 2015.
- Houde15(1,2)
Houde J.-C. et al. How to Avoid Biased Streamlines-Based Metrics for Streamlines with Variable Step Sizes, ISMRM, 2015.
Examples
>>> from dipy.tracking.streamline import compress_streamlines >>> import numpy as np >>> # One streamline: a wiggling line >>> rng = np.random.RandomState(42) >>> streamline = np.linspace(0, 10, 100*3).reshape((100, 3)) >>> streamline += 0.2 * rng.rand(100, 3) >>> c_streamline = compress_streamlines(streamline, tol_error=0.2) >>> len(streamline) 100 >>> len(c_streamline) 10 >>> # Multiple streamlines >>> streamlines = [streamline, streamline[::2]] >>> c_streamlines = compress_streamlines(streamlines, tol_error=0.2) >>> [len(s) for s in streamlines] [100, 50] >>> [len(s) for s in c_streamlines] [10, 7]
deepcopy¶
-
dipy.tracking.streamline.
deepcopy
(x, memo=None, _nil=[])¶ Deep copy operation on arbitrary Python objects.
See the module’s __doc__ string for more info.
deform_streamlines¶
-
dipy.tracking.streamline.
deform_streamlines
(streamlines, deform_field, stream_to_current_grid, current_grid_to_world, stream_to_ref_grid, ref_grid_to_world)¶ Apply deformation field to streamlines
- Parameters
- streamlineslist
List of 2D ndarrays of shape[-1]==3
- deform_field4D numpy array
x,y,z displacements stored in volume, shape[-1]==3
- stream_to_current_gridarray, (4, 4)
transform matrix voxmm space to original grid space
- current_grid_to_worldarray (4, 4)
transform matrix original grid space to world coordinates
- stream_to_ref_gridarray (4, 4)
transform matrix voxmm space to new grid space
- ref_grid_to_worldarray(4, 4)
transform matrix new grid space to world coordinates
- Returns
- new_streamlineslist
List of the transformed 2D ndarrays of shape[-1]==3
dist_to_corner¶
-
dipy.tracking.streamline.
dist_to_corner
(affine)¶ Calculate the maximal distance from the center to a corner of a voxel, given an affine
- Parameters
- affine4 by 4 array.
The spatial transformation from the measurement to the scanner space.
- Returns
- dist: float
The maximal distance to the corner of a voxel, given voxel size encoded in the affine.
interpolate_scalar_3d¶
-
dipy.tracking.streamline.
interpolate_scalar_3d
()¶ Trilinear interpolation of a 3D scalar image
Interpolates the 3D image at the given locations. This function is a wrapper for _interpolate_scalar_3d for testing purposes, it is equivalent to scipy.ndimage.interpolation.map_coordinates with trilinear interpolation
- Parameters
- fieldarray, shape (S, R, C)
the 3D image to be interpolated
- locationsarray, shape (n, 3)
(locations[i,0], locations[i,1], locations[i,2), 0<=i<n must contain the coordinates to interpolate the image at
- Returns
- outarray, shape (n,)
out[i], 0<=i<n will be the interpolated scalar at coordinates locations[i,:], or 0 if locations[i,:] is outside the image
- insidearray, (n,)
if locations[i,:] is inside the image then inside[i]=1, else inside[i]=0
interpolate_vector_3d¶
-
dipy.tracking.streamline.
interpolate_vector_3d
()¶ Trilinear interpolation of a 3D vector field
Interpolates the 3D vector field at the given locations. This function is a wrapper for _interpolate_vector_3d for testing purposes, it is equivalent to using scipy.ndimage.interpolation.map_coordinates with trilinear interpolation at each vector component
- Parameters
- fieldarray, shape (S, R, C, 3)
the 3D vector field to be interpolated
- locationsarray, shape (n, 3)
(locations[i,0], locations[i,1], locations[i,2), 0<=i<n must contain the coordinates to interpolate the vector field at
- Returns
- outarray, shape (n, 3)
out[i,:], 0<=i<n will be the interpolated vector at coordinates locations[i,:], or (0,0,0) if locations[i,:] is outside the field
- insidearray, (n,)
if locations[i,:] is inside the vector field then inside[i]=1, else inside[i]=0
length¶
-
dipy.tracking.streamline.
length
()¶ Euclidean length of streamlines
Length is in mm only if streamlines are expressed in world coordinates.
- Parameters
- streamlinesndarray or a list or
dipy.tracking.Streamlines
If ndarray, must have shape (N,3) where N is the number of points of the streamline. If list, each item must be ndarray shape (Ni,3) where Ni is the number of points of streamline i. If
dipy.tracking.Streamlines
, its common_shape must be 3.
- streamlinesndarray or a list or
- Returns
- lengthsscalar or ndarray shape (N,)
If there is only one streamline, a scalar representing the length of the streamline. If there are several streamlines, ndarray containing the length of every streamline.
Examples
>>> from dipy.tracking.streamline import length >>> import numpy as np >>> streamline = np.array([[1, 1, 1], [2, 3, 4], [0, 0, 0]]) >>> expected_length = np.sqrt([1+2**2+3**2, 2**2+3**2+4**2]).sum() >>> length(streamline) == expected_length True >>> streamlines = [streamline, np.vstack([streamline, streamline[::-1]])] >>> expected_lengths = [expected_length, 2*expected_length] >>> lengths = [length(streamlines[0]), length(streamlines[1])] >>> np.allclose(lengths, expected_lengths) True >>> length([]) 0.0 >>> length(np.array([[1, 2, 3]])) 0.0
orient_by_rois¶
-
dipy.tracking.streamline.
orient_by_rois
(streamlines, affine, roi1, roi2, in_place=False, as_generator=False)¶ Orient a set of streamlines according to a pair of ROIs
- Parameters
- streamlineslist or generator
List or generator of 2d arrays of 3d coordinates. Each array contains the xyz coordinates of a single streamline.
- affinearray_like (4, 4)
The mapping from voxel coordinates to streamline points. The voxel_to_rasmm matrix, typically from a NIFTI file.
- roi1, roi2ndarray
Binary masks designating the location of the regions of interest, or coordinate arrays (n-by-3 array with ROI coordinate in each row).
- in_placebool
Whether to make the change in-place in the original list (and return a reference to the list), or to make a copy of the list and return this copy, with the relevant streamlines reoriented. Default: False.
- as_generatorbool
Whether to return a generator as output. Default: False
- Returns
- streamlineslist or generator
The same 3D arrays as a list or generator, but reoriented with respect to the ROIs
Examples
>>> streamlines = [np.array([[0, 0., 0], ... [1, 0., 0.], ... [2, 0., 0.]]), ... np.array([[2, 0., 0.], ... [1, 0., 0], ... [0, 0, 0.]])] >>> roi1 = np.zeros((4, 4, 4), dtype=bool) >>> roi2 = np.zeros_like(roi1) >>> roi1[0, 0, 0] = True >>> roi2[1, 0, 0] = True >>> orient_by_rois(streamlines, np.eye(4), roi1, roi2) [array([[ 0., 0., 0.], [ 1., 0., 0.], [ 2., 0., 0.]]), array([[ 0., 0., 0.], [ 1., 0., 0.], [ 2., 0., 0.]])]
orient_by_streamline¶
-
dipy.tracking.streamline.
orient_by_streamline
(streamlines, standard, n_points=12, in_place=False, as_generator=False)¶ Orient a bundle of streamlines to a standard streamline.
- Parameters
- streamlinesStreamlines, list
The input streamlines to orient.
- standardStreamlines, list, or ndarrray
This provides the standard orientation according to which the streamlines in the provided bundle should be reoriented.
- n_points: int, optional
The number of samples to apply to each of the streamlines.
- in_placebool
Whether to make the change in-place in the original input (and return a reference), or to make a copy of the list and return this copy, with the relevant streamlines reoriented. Default: False.
- as_generatorbool
Whether to return a generator as output. Default: False
- Returns
- Streamlineswith each individual array oriented to be as similar as
possible to the standard.
relist_streamlines¶
-
dipy.tracking.streamline.
relist_streamlines
(points, offsets)¶ Given a representation of a set of streamlines as a large array and an offsets array return the streamlines as a list of shorter arrays.
- Parameters
- pointsarray
- offsetsarray
- Returns
- streamlines: sequence
select_by_rois¶
-
dipy.tracking.streamline.
select_by_rois
(streamlines, affine, rois, include, mode=None, tol=None)¶ Select streamlines based on logical relations with several regions of interest (ROIs). For example, select streamlines that pass near ROI1, but only if they do not pass near ROI2.
- Parameters
- streamlineslist
A list of candidate streamlines for selection
- affinearray_like (4, 4)
The mapping from voxel coordinates to streamline points. The voxel_to_rasmm matrix, typically from a NIFTI file.
- roislist or ndarray
A list of 3D arrays, each with shape (x, y, z) corresponding to the shape of the brain volume, or a 4D array with shape (n_rois, x, y, z). Non-zeros in each volume are considered to be within the region
- includearray or list
A list or 1D array of boolean values marking inclusion or exclusion criteria. If a streamline is near any of the inclusion ROIs, it should evaluate to True, unless it is also near any of the exclusion ROIs.
- modestring, optional
One of {“any”, “all”, “either_end”, “both_end”}, where a streamline is associated with an ROI if:
“any” : any point is within tol from ROI. Default.
“all” : all points are within tol from ROI.
“either_end” : either of the end-points is within tol from ROI
“both_end” : both end points are within tol from ROI.
- tolfloat
Distance (in the units of the streamlines, usually mm). If any coordinate in the streamline is within this distance from the center of any voxel in the ROI, the filtering criterion is set to True for this streamline, otherwise False. Defaults to the distance between the center of each voxel and the corner of the voxel.
- Returns
- generator
Generates the streamlines to be included based on these criteria.
Notes
The only operation currently possible is “(A or B or …) and not (X or Y or …)”, where A, B are inclusion regions and X, Y are exclusion regions.
Examples
>>> streamlines = [np.array([[0, 0., 0.9], ... [1.9, 0., 0.]]), ... np.array([[0., 0., 0], ... [0, 1., 1.], ... [0, 2., 2.]]), ... np.array([[2, 2, 2], ... [3, 3, 3]])] >>> mask1 = np.zeros((4, 4, 4), dtype=bool) >>> mask2 = np.zeros_like(mask1) >>> mask1[0, 0, 0] = True >>> mask2[1, 0, 0] = True >>> selection = select_by_rois(streamlines, np.eye(4), [mask1, mask2], ... [True, True], ... tol=1) >>> list(selection) # The result is a generator [array([[ 0. , 0. , 0.9], [ 1.9, 0. , 0. ]]), array([[ 0., 0., 0.], [ 0., 1., 1.], [ 0., 2., 2.]])] >>> selection = select_by_rois(streamlines, np.eye(4), [mask1, mask2], ... [True, False], ... tol=0.87) >>> list(selection) [array([[ 0., 0., 0.], [ 0., 1., 1.], [ 0., 2., 2.]])] >>> selection = select_by_rois(streamlines, np.eye(4), [mask1, mask2], ... [True, True], ... mode="both_end", ... tol=1.0) >>> list(selection) [array([[ 0. , 0. , 0.9], [ 1.9, 0. , 0. ]])] >>> mask2[0, 2, 2] = True >>> selection = select_by_rois(streamlines, np.eye(4), [mask1, mask2], ... [True, True], ... mode="both_end", ... tol=1.0) >>> list(selection) [array([[ 0. , 0. , 0.9], [ 1.9, 0. , 0. ]]), array([[ 0., 0., 0.], [ 0., 1., 1.], [ 0., 2., 2.]])]
select_random_set_of_streamlines¶
-
dipy.tracking.streamline.
select_random_set_of_streamlines
(streamlines, select, rng=None)¶ Select a random set of streamlines
- Parameters
- streamlinesSteamlines
Object of 2D ndarrays of shape[-1]==3
- selectint
Number of streamlines to select. If there are less streamlines than
select
thenselect=len(streamlines)
.- rngRandomState
Default None.
- Returns
- selected_streamlineslist
Notes
The same streamline will not be selected twice.
set_number_of_points¶
-
dipy.tracking.streamline.
set_number_of_points
()¶ - Change the number of points of streamlines
(either by downsampling or upsampling)
Change the number of points of streamlines in order to obtain nb_points-1 segments of equal length. Points of streamlines will be modified along the curve.
- Parameters
- streamlinesndarray or a list or
dipy.tracking.Streamlines
If ndarray, must have shape (N,3) where N is the number of points of the streamline. If list, each item must be ndarray shape (Ni,3) where Ni is the number of points of streamline i. If
dipy.tracking.Streamlines
, its common_shape must be 3.- nb_pointsint
integer representing number of points wanted along the curve.
- streamlinesndarray or a list or
- Returns
- new_streamlinesndarray or a list or
dipy.tracking.Streamlines
Results of the downsampling or upsampling process.
- new_streamlinesndarray or a list or
Examples
>>> from dipy.tracking.streamline import set_number_of_points >>> import numpy as np
One streamline, a semi-circle:
>>> theta = np.pi*np.linspace(0, 1, 100) >>> x = np.cos(theta) >>> y = np.sin(theta) >>> z = 0 * x >>> streamline = np.vstack((x, y, z)).T >>> modified_streamline = set_number_of_points(streamline, 3) >>> len(modified_streamline) 3
Multiple streamlines:
>>> streamlines = [streamline, streamline[::2]] >>> new_streamlines = set_number_of_points(streamlines, 10) >>> [len(s) for s in streamlines] [100, 50] >>> [len(s) for s in new_streamlines] [10, 10]
transform_streamlines¶
-
dipy.tracking.streamline.
transform_streamlines
(streamlines, mat, in_place=False)¶ Apply affine transformation to streamlines
- Parameters
- streamlinesStreamlines
Streamlines object
- matarray, (4, 4)
transformation matrix
- in_placebool
If True then change data in place. Be careful changes input streamlines.
- Returns
- new_streamlinesStreamlines
Sequence transformed 2D ndarrays of shape[-1]==3
unlist_streamlines¶
-
dipy.tracking.streamline.
unlist_streamlines
(streamlines)¶ Return the streamlines not as a list but as an array and an offset
- Parameters
- streamlines: sequence
- Returns
- pointsarray
- offsetsarray
values_from_volume¶
-
dipy.tracking.streamline.
values_from_volume
(data, streamlines, affine)¶ Extract values of a scalar/vector along each streamline from a volume.
- Parameters
- data3D or 4D array
Scalar (for 3D) and vector (for 4D) values to be extracted. For 4D data, interpolation will be done on the 3 spatial dimensions in each volume.
- streamlinesndarray or list
If array, of shape (n_streamlines, n_nodes, 3) If list, len(n_streamlines) with (n_nodes, 3) array in each element of the list.
- affinearray_like (4, 4)
The mapping from voxel coordinates to streamline points. The voxel_to_rasmm matrix, typically from a NIFTI file.
- Returns
- array or list (depending on the input)values interpolate to each
coordinate along the length of each streamline.
Notes
Values are extracted from the image based on the 3D coordinates of the nodes that comprise the points in the streamline, without any interpolation into segments between the nodes. Using this function with streamlines that have been resampled into a very small number of nodes will result in very few values.
defaultdict
¶
-
class
dipy.tracking.utils.
defaultdict
¶ Bases:
dict
defaultdict(default_factory[, …]) –> dict with default factory
The default factory is called without arguments to produce a new value when a key is not present, in __getitem__ only. A defaultdict compares equal to a dict with the same items. All remaining arguments are treated the same as if they were passed to the dict constructor, including keyword arguments.
- Attributes
- default_factory
Factory for default value called by __missing__().
Methods
clear
()copy
()fromkeys
($type, iterable[, value])Returns a new dict with keys from iterable and values equal to value.
get
(k[,d])items
()keys
()pop
(k[,d])If key is not found, d is returned if given, otherwise KeyError is raised
popitem
()2-tuple; but raise KeyError if D is empty.
setdefault
(k[,d])update
([E, ]**F)If E is present and has a .keys() method, then does: for k in E: D[k] = E[k] If E is present and lacks a .keys() method, then does: for k, v in E: D[k] = v In either case, this is followed by: for k in F: D[k] = F[k]
values
()-
__init__
($self, /, *args, **kwargs)¶ Initialize self. See help(type(self)) for accurate signature.
-
copy
() → a shallow copy of D.¶
-
default_factory
¶ Factory for default value called by __missing__().
apply_affine¶
-
dipy.tracking.utils.
apply_affine
(aff, pts)¶ Apply affine matrix aff to points pts
Returns result of application of aff to the right of pts. The coordinate dimension of pts should be the last.
For the 3D case, aff will be shape (4,4) and pts will have final axis length 3 - maybe it will just be N by 3. The return value is the transformed points, in this case:
res = np.dot(aff[:3,:3], pts.T) + aff[:3,3:4] transformed_pts = res.T
This routine is more general than 3D, in that aff can have any shape (N,N), and pts can have any shape, as long as the last dimension is for the coordinates, and is therefore length N-1.
- Parameters
- aff(N, N) array-like
Homogenous affine, for 3D points, will be 4 by 4. Contrary to first appearance, the affine will be applied on the left of pts.
- pts(…, N-1) array-like
Points, where the last dimension contains the coordinates of each point. For 3D, the last dimension will be length 3.
- Returns
- transformed_pts(…, N-1) array
transformed points
Examples
>>> aff = np.array([[0,2,0,10],[3,0,0,11],[0,0,4,12],[0,0,0,1]]) >>> pts = np.array([[1,2,3],[2,3,4],[4,5,6],[6,7,8]]) >>> apply_affine(aff, pts) #doctest: +ELLIPSIS array([[14, 14, 24], [16, 17, 28], [20, 23, 36], [24, 29, 44]]...)
Just to show that in the simple 3D case, it is equivalent to:
>>> (np.dot(aff[:3,:3], pts.T) + aff[:3,3:4]).T #doctest: +ELLIPSIS array([[14, 14, 24], [16, 17, 28], [20, 23, 36], [24, 29, 44]]...)
But pts can be a more complicated shape:
>>> pts = pts.reshape((2,2,3)) >>> apply_affine(aff, pts) #doctest: +ELLIPSIS array([[[14, 14, 24], [16, 17, 28]], <BLANKLINE> [[20, 23, 36], [24, 29, 44]]]...)
asarray¶
-
dipy.tracking.utils.
asarray
(a, dtype=None, order=None)¶ Convert the input to an array.
- Parameters
- aarray_like
Input data, in any form that can be converted to an array. This includes lists, lists of tuples, tuples, tuples of tuples, tuples of lists and ndarrays.
- dtypedata-type, optional
By default, the data-type is inferred from the input data.
- order{‘C’, ‘F’}, optional
Whether to use row-major (C-style) or column-major (Fortran-style) memory representation. Defaults to ‘C’.
- Returns
- outndarray
Array interpretation of a. No copy is performed if the input is already an ndarray with matching dtype and order. If a is a subclass of ndarray, a base class ndarray is returned.
See also
asanyarray
Similar function which passes through subclasses.
ascontiguousarray
Convert input to a contiguous array.
asfarray
Convert input to a floating point ndarray.
asfortranarray
Convert input to an ndarray with column-major memory order.
asarray_chkfinite
Similar function which checks input for NaNs and Infs.
fromiter
Create an array from an iterator.
fromfunction
Construct an array by executing a function on grid positions.
Examples
Convert a list into an array:
>>> a = [1, 2] >>> np.asarray(a) array([1, 2])
Existing arrays are not copied:
>>> a = np.array([1, 2]) >>> np.asarray(a) is a True
If dtype is set, array is copied only if dtype does not match:
>>> a = np.array([1, 2], dtype=np.float32) >>> np.asarray(a, dtype=np.float32) is a True >>> np.asarray(a, dtype=np.float64) is a False
Contrary to asanyarray, ndarray subclasses are not passed through:
>>> issubclass(np.recarray, np.ndarray) True >>> a = np.array([(1.0, 2), (3.0, 4)], dtype='f4,i4').view(np.recarray) >>> np.asarray(a) is a False >>> np.asanyarray(a) is a True
cdist¶
-
dipy.tracking.utils.
cdist
(XA, XB, metric='euclidean', *args, **kwargs)¶ Compute distance between each pair of the two collections of inputs.
See Notes for common calling conventions.
- Parameters
- XAndarray
An \(m_A\) by \(n\) array of \(m_A\) original observations in an \(n\)-dimensional space. Inputs are converted to float type.
- XBndarray
An \(m_B\) by \(n\) array of \(m_B\) original observations in an \(n\)-dimensional space. Inputs are converted to float type.
- metricstr or callable, optional
The distance metric to use. If a string, the distance function can be ‘braycurtis’, ‘canberra’, ‘chebyshev’, ‘cityblock’, ‘correlation’, ‘cosine’, ‘dice’, ‘euclidean’, ‘hamming’, ‘jaccard’, ‘kulsinski’, ‘mahalanobis’, ‘matching’, ‘minkowski’, ‘rogerstanimoto’, ‘russellrao’, ‘seuclidean’, ‘sokalmichener’, ‘sokalsneath’, ‘sqeuclidean’, ‘wminkowski’, ‘yule’.
- *argstuple. Deprecated.
Additional arguments should be passed as keyword arguments
- **kwargsdict, optional
Extra arguments to metric: refer to each metric documentation for a list of all possible arguments.
Some possible arguments:
p : scalar The p-norm to apply for Minkowski, weighted and unweighted. Default: 2.
w : ndarray The weight vector for metrics that support weights (e.g., Minkowski).
V : ndarray The variance vector for standardized Euclidean. Default: var(vstack([XA, XB]), axis=0, ddof=1)
VI : ndarray The inverse of the covariance matrix for Mahalanobis. Default: inv(cov(vstack([XA, XB].T))).T
out : ndarray The output array If not None, the distance matrix Y is stored in this array. Note: metric independent, it will become a regular keyword arg in a future scipy version
- Returns
- Yndarray
A \(m_A\) by \(m_B\) distance matrix is returned. For each \(i\) and \(j\), the metric
dist(u=XA[i], v=XB[j])
is computed and stored in the \(ij\) th entry.
- Raises
- ValueError
An exception is thrown if XA and XB do not have the same number of columns.
Notes
The following are common calling conventions:
Y = cdist(XA, XB, 'euclidean')
Computes the distance between \(m\) points using Euclidean distance (2-norm) as the distance metric between the points. The points are arranged as \(m\) \(n\)-dimensional row vectors in the matrix X.
Y = cdist(XA, XB, 'minkowski', p=2.)
Computes the distances using the Minkowski distance \(||u-v||_p\) (\(p\)-norm) where \(p \geq 1\).
Y = cdist(XA, XB, 'cityblock')
Computes the city block or Manhattan distance between the points.
Y = cdist(XA, XB, 'seuclidean', V=None)
Computes the standardized Euclidean distance. The standardized Euclidean distance between two n-vectors
u
andv
is\[\sqrt{\sum {(u_i-v_i)^2 / V[x_i]}}.\]V is the variance vector; V[i] is the variance computed over all the i’th components of the points. If not passed, it is automatically computed.
Y = cdist(XA, XB, 'sqeuclidean')
Computes the squared Euclidean distance \(||u-v||_2^2\) between the vectors.
Y = cdist(XA, XB, 'cosine')
Computes the cosine distance between vectors u and v,
\[1 - \frac{u \cdot v} {{||u||}_2 {||v||}_2}\]where \(||*||_2\) is the 2-norm of its argument
*
, and \(u \cdot v\) is the dot product of \(u\) and \(v\).Y = cdist(XA, XB, 'correlation')
Computes the correlation distance between vectors u and v. This is
\[1 - \frac{(u - \bar{u}) \cdot (v - \bar{v})} {{||(u - \bar{u})||}_2 {||(v - \bar{v})||}_2}\]where \(\bar{v}\) is the mean of the elements of vector v, and \(x \cdot y\) is the dot product of \(x\) and \(y\).
Y = cdist(XA, XB, 'hamming')
Computes the normalized Hamming distance, or the proportion of those vector elements between two n-vectors
u
andv
which disagree. To save memory, the matrixX
can be of type boolean.Y = cdist(XA, XB, 'jaccard')
Computes the Jaccard distance between the points. Given two vectors,
u
andv
, the Jaccard distance is the proportion of those elementsu[i]
andv[i]
that disagree where at least one of them is non-zero.Y = cdist(XA, XB, 'chebyshev')
Computes the Chebyshev distance between the points. The Chebyshev distance between two n-vectors
u
andv
is the maximum norm-1 distance between their respective elements. More precisely, the distance is given by\[d(u,v) = \max_i {|u_i-v_i|}.\]Y = cdist(XA, XB, 'canberra')
Computes the Canberra distance between the points. The Canberra distance between two points
u
andv
is\[d(u,v) = \sum_i \frac{|u_i-v_i|} {|u_i|+|v_i|}.\]Y = cdist(XA, XB, 'braycurtis')
Computes the Bray-Curtis distance between the points. The Bray-Curtis distance between two points
u
andv
is\[d(u,v) = \frac{\sum_i (|u_i-v_i|)} {\sum_i (|u_i+v_i|)}\]Y = cdist(XA, XB, 'mahalanobis', VI=None)
Computes the Mahalanobis distance between the points. The Mahalanobis distance between two points
u
andv
is \(\sqrt{(u-v)(1/V)(u-v)^T}\) where \((1/V)\) (theVI
variable) is the inverse covariance. IfVI
is not None,VI
will be used as the inverse covariance matrix.Y = cdist(XA, XB, 'yule')
Computes the Yule distance between the boolean vectors. (see yule function documentation)
Y = cdist(XA, XB, 'matching')
Synonym for ‘hamming’.
Y = cdist(XA, XB, 'dice')
Computes the Dice distance between the boolean vectors. (see dice function documentation)
Y = cdist(XA, XB, 'kulsinski')
Computes the Kulsinski distance between the boolean vectors. (see kulsinski function documentation)
Y = cdist(XA, XB, 'rogerstanimoto')
Computes the Rogers-Tanimoto distance between the boolean vectors. (see rogerstanimoto function documentation)
Y = cdist(XA, XB, 'russellrao')
Computes the Russell-Rao distance between the boolean vectors. (see russellrao function documentation)
Y = cdist(XA, XB, 'sokalmichener')
Computes the Sokal-Michener distance between the boolean vectors. (see sokalmichener function documentation)
Y = cdist(XA, XB, 'sokalsneath')
Computes the Sokal-Sneath distance between the vectors. (see sokalsneath function documentation)
Y = cdist(XA, XB, 'wminkowski', p=2., w=w)
Computes the weighted Minkowski distance between the vectors. (see wminkowski function documentation)
Y = cdist(XA, XB, f)
Computes the distance between all pairs of vectors in X using the user supplied 2-arity function f. For example, Euclidean distance between the vectors could be computed as follows:
dm = cdist(XA, XB, lambda u, v: np.sqrt(((u-v)**2).sum()))
Note that you should avoid passing a reference to one of the distance functions defined in this library. For example,:
dm = cdist(XA, XB, sokalsneath)
would calculate the pair-wise distances between the vectors in X using the Python function sokalsneath. This would result in sokalsneath being called \({n \choose 2}\) times, which is inefficient. Instead, the optimized C version is more efficient, and we call it using the following syntax:
dm = cdist(XA, XB, 'sokalsneath')
Examples
Find the Euclidean distances between four 2-D coordinates:
>>> from scipy.spatial import distance >>> coords = [(35.0456, -85.2672), ... (35.1174, -89.9711), ... (35.9728, -83.9422), ... (36.1667, -86.7833)] >>> distance.cdist(coords, coords, 'euclidean') array([[ 0. , 4.7044, 1.6172, 1.8856], [ 4.7044, 0. , 6.0893, 3.3561], [ 1.6172, 6.0893, 0. , 2.8477], [ 1.8856, 3.3561, 2.8477, 0. ]])
Find the Manhattan distance from a 3-D point to the corners of the unit cube:
>>> a = np.array([[0, 0, 0], ... [0, 0, 1], ... [0, 1, 0], ... [0, 1, 1], ... [1, 0, 0], ... [1, 0, 1], ... [1, 1, 0], ... [1, 1, 1]]) >>> b = np.array([[ 0.1, 0.2, 0.4]]) >>> distance.cdist(a, b, 'cityblock') array([[ 0.7], [ 0.9], [ 1.3], [ 1.5], [ 1.5], [ 1.7], [ 2.1], [ 2.3]])
connectivity_matrix¶
-
dipy.tracking.utils.
connectivity_matrix
(streamlines, affine, label_volume, symmetric=True, return_mapping=False, mapping_as_streamlines=False)¶ Counts the streamlines that start and end at each label pair.
- Parameters
- streamlinessequence
A sequence of streamlines.
- affinearray_like (4, 4)
The mapping from voxel coordinates to streamline coordinates. The voxel_to_rasmm matrix, typically from a NIFTI file.
- label_volumendarray
An image volume with an integer data type, where the intensities in the volume map to anatomical structures.
- symmetricbool, True by default
Symmetric means we don’t distinguish between start and end points. If symmetric is True,
matrix[i, j] == matrix[j, i]
.- return_mappingbool, False by default
If True, a mapping is returned which maps matrix indices to streamlines.
- mapping_as_streamlinesbool, False by default
If True voxel indices map to lists of streamline objects. Otherwise voxel indices map to lists of integers.
- Returns
- matrixndarray
The number of connection between each pair of regions in label_volume.
- mappingdefaultdict(list)
mapping[i, j]
returns all the streamlines that connect region i to region j. If symmetric is True mapping will only have one key for each start end pair such that ifi < j
mapping will have key(i, j)
but not key(j, i)
.
density_map¶
-
dipy.tracking.utils.
density_map
(streamlines, affine, vol_dims)¶ Counts the number of unique streamlines that pass through each voxel.
- Parameters
- streamlinesiterable
A sequence of streamlines.
- affinearray_like (4, 4)
The mapping from voxel coordinates to streamline points. The voxel_to_rasmm matrix, typically from a NIFTI file.
- vol_dims3 ints
The shape of the volume to be returned containing the streamlines counts
- Returns
- image_volumendarray, shape=vol_dims
The number of streamline points in each voxel of volume.
- Raises
- IndexError
When the points of the streamlines lie outside of the return volume.
Notes
A streamline can pass through a voxel even if one of the points of the streamline does not lie in the voxel. For example a step from [0,0,0] to [0,0,2] passes through [0,0,1]. Consider subsegmenting the streamlines when the edges of the voxels are smaller than the steps of the streamlines.
dist_to_corner¶
-
dipy.tracking.utils.
dist_to_corner
(affine)¶ Calculate the maximal distance from the center to a corner of a voxel, given an affine
- Parameters
- affine4 by 4 array.
The spatial transformation from the measurement to the scanner space.
- Returns
- dist: float
The maximal distance to the corner of a voxel, given voxel size encoded in the affine.
empty¶
-
dipy.tracking.utils.
empty
(shape, dtype=float, order='C')¶ Return a new array of given shape and type, without initializing entries.
- Parameters
- shapeint or tuple of int
Shape of the empty array, e.g.,
(2, 3)
or2
.- dtypedata-type, optional
Desired output data-type for the array, e.g, numpy.int8. Default is numpy.float64.
- order{‘C’, ‘F’}, optional, default: ‘C’
Whether to store multi-dimensional data in row-major (C-style) or column-major (Fortran-style) order in memory.
- Returns
- outndarray
Array of uninitialized (arbitrary) data of the given shape, dtype, and order. Object arrays will be initialized to None.
See also
empty_like
Return an empty array with shape and type of input.
ones
Return a new array setting values to one.
zeros
Return a new array setting values to zero.
full
Return a new array of given shape filled with value.
Notes
empty, unlike zeros, does not set the array values to zero, and may therefore be marginally faster. On the other hand, it requires the user to manually set all the values in the array, and should be used with caution.
Examples
>>> np.empty([2, 2]) array([[ -9.74499359e+001, 6.69583040e-309], [ 2.13182611e-314, 3.06959433e-309]]) #random
>>> np.empty([2, 2], dtype=int) array([[-1073741821, -1067949133], [ 496041986, 19249760]]) #random
length¶
-
dipy.tracking.utils.
length
(streamlines)¶ Calculate the lengths of many streamlines in a bundle.
- Parameters
- streamlineslist
Each item in the list is an array with 3D coordinates of a streamline.
- Returns
- Iterator object which then computes the length of each
- streamline in the bundle, upon iteration.
minimum_at¶
-
dipy.tracking.utils.
minimum_at
(a, indices, b=None)¶ Performs unbuffered in place operation on operand ‘a’ for elements specified by ‘indices’. For addition ufunc, this method is equivalent to
a[indices] += b
, except that results are accumulated for elements that are indexed more than once. For example,a[[0,0]] += 1
will only increment the first element once because of buffering, whereasadd.at(a, [0,0], 1)
will increment the first element twice.New in version 1.8.0.
- Parameters
- aarray_like
The array to perform in place operation on.
- indicesarray_like or tuple
Array like index object or slice object for indexing into first operand. If first operand has multiple dimensions, indices can be a tuple of array like index objects or slice objects.
- barray_like
Second operand for ufuncs requiring two operands. Operand must be broadcastable over first operand after indexing or slicing.
Examples
Set items 0 and 1 to their negative values:
>>> a = np.array([1, 2, 3, 4]) >>> np.negative.at(a, [0, 1]) >>> print(a) array([-1, -2, 3, 4])
Increment items 0 and 1, and increment item 2 twice:
>>> a = np.array([1, 2, 3, 4]) >>> np.add.at(a, [0, 1, 2, 2], 1) >>> print(a) array([2, 3, 5, 4])
Add items 0 and 1 in first array to second array, and store results in first array:
>>> a = np.array([1, 2, 3, 4]) >>> b = np.array([1, 2]) >>> np.add.at(a, [0, 1], b) >>> print(a) array([2, 4, 3, 4])
ndbincount¶
-
dipy.tracking.utils.
ndbincount
(x, weights=None, shape=None)¶ Like bincount, but for nd-indices.
- Parameters
- xarray_like (N, M)
M indices to a an Nd-array
- weightsarray_like (M,), optional
Weights associated with indices
- shapeoptional
the shape of the output
near_roi¶
-
dipy.tracking.utils.
near_roi
(streamlines, affine, region_of_interest, tol=None, mode='any')¶ Provide filtering criteria for a set of streamlines based on whether they fall within a tolerance distance from an ROI
- Parameters
- streamlineslist or generator
A sequence of streamlines. Each streamline should be a (N, 3) array, where N is the length of the streamline.
- affinearray (4, 4)
The mapping between voxel indices and the point space for seeds. The voxel_to_rasmm matrix, typically from a NIFTI file.
- region_of_interestndarray
A mask used as a target. Non-zero values are considered to be within the target region.
- tolfloat
Distance (in the units of the streamlines, usually mm). If any coordinate in the streamline is within this distance from the center of any voxel in the ROI, the filtering criterion is set to True for this streamline, otherwise False. Defaults to the distance between the center of each voxel and the corner of the voxel.
- modestring, optional
One of {“any”, “all”, “either_end”, “both_end”}, where return True if:
“any” : any point is within tol from ROI. Default.
“all” : all points are within tol from ROI.
“either_end” : either of the end-points is within tol from ROI
“both_end” : both end points are within tol from ROI.
- Returns
- 1D array of boolean dtype, shape (len(streamlines), )
- This contains `True` for indices corresponding to each streamline
- that passes within a tolerance distance from the target ROI, `False`
- otherwise.
path_length¶
-
dipy.tracking.utils.
path_length
(streamlines, affine, aoi, fill_value=-1)¶ Computes the shortest path, along any streamline, between aoi and each voxel.
- Parameters
- streamlinesseq of (N, 3) arrays
A sequence of streamlines, path length is given in mm along the curve of the streamline.
- aoiarray, 3d
A mask (binary array) of voxels from which to start computing distance.
- affinearray (4, 4)
The mapping between voxel indices and the point space for seeds. The voxel_to_rasmm matrix, typically from a NIFTI file.
- fill_valuefloat
The value of voxel in the path length map that are not connected to the aoi.
- Returns
- plmarray
Same shape as aoi. The minimum distance between every point and aoi along the path of a streamline.
random_seeds_from_mask¶
-
dipy.tracking.utils.
random_seeds_from_mask
(mask, affine, seeds_count=1, seed_count_per_voxel=True, random_seed=None)¶ Create randomly placed seeds for fiber tracking from a binary mask.
Seeds points are placed randomly distributed in voxels of
mask
which areTrue
. Ifseed_count_per_voxel
isTrue
, this function is similar toseeds_from_mask()
, with the difference that instead of evenly distributing the seeds, it randomly places the seeds within the voxels specified by themask
.- Parameters
- maskbinary 3d array_like
A binary array specifying where to place the seeds for fiber tracking.
- affinearray, (4, 4)
The mapping between voxel indices and the point space for seeds. The voxel_to_rasmm matrix, typically from a NIFTI file. A seed point at the center the voxel
[i, j, k]
will be represented as[x, y, z]
where[x, y, z, 1] == np.dot(affine, [i, j, k , 1])
.- seeds_countint
The number of seeds to generate. If
seed_count_per_voxel
is True, specifies the number of seeds to place in each voxel. Otherwise, specifies the total number of seeds to place in the mask.- seed_count_per_voxel: bool
If True, seeds_count is per voxel, else seeds_count is the total number of seeds.
- random_seedint
The seed for the random seed generator (numpy.random.seed).
- Raises
- ValueError
When
mask
is not a three-dimensional array
See also
Examples
>>> mask = np.zeros((3,3,3), 'bool') >>> mask[0,0,0] = 1 >>> random_seeds_from_mask(mask, np.eye(4), seeds_count=1, ... seed_count_per_voxel=True, random_seed=1) array([[-0.0640051 , -0.47407377, 0.04966248]]) >>> random_seeds_from_mask(mask, np.eye(4), seeds_count=6, ... seed_count_per_voxel=True, random_seed=1) array([[-0.0640051 , -0.47407377, 0.04966248], [ 0.0507979 , 0.20814782, -0.20909526], [ 0.46702984, 0.04723225, 0.47268436], [-0.27800683, 0.37073231, -0.29328084], [ 0.39286015, -0.16802019, 0.32122912], [-0.42369171, 0.27991879, -0.06159077]]) >>> mask[0,1,2] = 1 >>> random_seeds_from_mask(mask, np.eye(4), ... seeds_count=2, seed_count_per_voxel=True, random_seed=1) array([[-0.0640051 , -0.47407377, 0.04966248], [-0.27800683, 1.37073231, 1.70671916], [ 0.0507979 , 0.20814782, -0.20909526], [-0.48962585, 1.00187459, 1.99577329]])
ravel_multi_index¶
-
dipy.tracking.utils.
ravel_multi_index
(multi_index, dims, mode='raise', order='C')¶ Converts a tuple of index arrays into an array of flat indices, applying boundary modes to the multi-index.
- Parameters
- multi_indextuple of array_like
A tuple of integer arrays, one array for each dimension.
- dimstuple of ints
The shape of array into which the indices from
multi_index
apply.- mode{‘raise’, ‘wrap’, ‘clip’}, optional
Specifies how out-of-bounds indices are handled. Can specify either one mode or a tuple of modes, one mode per index.
‘raise’ – raise an error (default)
‘wrap’ – wrap around
‘clip’ – clip to the range
In ‘clip’ mode, a negative index which would normally wrap will clip to 0 instead.
- order{‘C’, ‘F’}, optional
Determines whether the multi-index should be viewed as indexing in row-major (C-style) or column-major (Fortran-style) order.
- Returns
- raveled_indicesndarray
An array of indices into the flattened version of an array of dimensions
dims
.
See also
unravel_index
Notes
New in version 1.6.0.
Examples
>>> arr = np.array([[3,6,6],[4,5,1]]) >>> np.ravel_multi_index(arr, (7,6)) array([22, 41, 37]) >>> np.ravel_multi_index(arr, (7,6), order='F') array([31, 41, 13]) >>> np.ravel_multi_index(arr, (4,6), mode='clip') array([22, 23, 19]) >>> np.ravel_multi_index(arr, (4,4), mode=('clip','wrap')) array([12, 13, 13])
>>> np.ravel_multi_index((3,1,4,1), (6,7,8,9)) 1621
reduce_labels¶
-
dipy.tracking.utils.
reduce_labels
(label_volume)¶ Reduces an array of labels to the integers from 0 to n with smallest possible n.
Examples
>>> labels = np.array([[1, 3, 9], ... [1, 3, 8], ... [1, 3, 7]]) >>> new_labels, lookup = reduce_labels(labels) >>> lookup array([1, 3, 7, 8, 9]) >>> new_labels #doctest: +ELLIPSIS array([[0, 1, 4], [0, 1, 3], [0, 1, 2]]...) >>> (lookup[new_labels] == labels).all() True
reduce_rois¶
-
dipy.tracking.utils.
reduce_rois
(rois, include)¶ Reduce multiple ROIs to one inclusion and one exclusion ROI.
- Parameters
- roislist or ndarray
A list of 3D arrays, each with shape (x, y, z) corresponding to the shape of the brain volume, or a 4D array with shape (n_rois, x, y, z). Non-zeros in each volume are considered to be within the region.
- includearray or list
A list or 1D array of boolean marking inclusion or exclusion criteria.
- Returns
- include_roiboolean 3D array
An array marking the inclusion mask.
- exclude_roiboolean 3D array
An array marking the exclusion mask
Notes
The include_roi and exclude_roi can be used to perfom the operation: “(A or B or …) and not (X or Y or …)”, where A, B are inclusion regions and X, Y are exclusion regions.
seeds_from_mask¶
-
dipy.tracking.utils.
seeds_from_mask
(mask, affine, density=[1, 1, 1])¶ Create seeds for fiber tracking from a binary mask.
Seeds points are placed evenly distributed in all voxels of
mask
which areTrue
.- Parameters
- maskbinary 3d array_like
A binary array specifying where to place the seeds for fiber tracking.
- affinearray, (4, 4)
The mapping between voxel indices and the point space for seeds. The voxel_to_rasmm matrix, typically from a NIFTI file. A seed point at the center the voxel
[i, j, k]
will be represented as[x, y, z]
where[x, y, z, 1] == np.dot(affine, [i, j, k , 1])
.- densityint or array_like (3,)
Specifies the number of seeds to place along each dimension. A
density
of 2 is the same as[2, 2, 2]
and will result in a total of 8 seeds per voxel.
- Raises
- ValueError
When
mask
is not a three-dimensional array
See also
Examples
>>> mask = np.zeros((3,3,3), 'bool') >>> mask[0,0,0] = 1 >>> seeds_from_mask(mask, np.eye(4), [1,1,1]) array([[ 0., 0., 0.]])
streamline_near_roi¶
-
dipy.tracking.utils.
streamline_near_roi
(streamline, roi_coords, tol, mode='any')¶ Is a streamline near an ROI.
Implements the inner loops of the
near_roi()
function.- Parameters
- streamlinearray, shape (N, 3)
A single streamline
- roi_coordsarray, shape (M, 3)
ROI coordinates transformed to the streamline coordinate frame.
- tolfloat
Distance (in the units of the streamlines, usually mm). If any coordinate in the streamline is within this distance from the center of any voxel in the ROI, this function returns True.
- modestring
One of {“any”, “all”, “either_end”, “both_end”}, where return True if:
“any” : any point is within tol from ROI.
“all” : all points are within tol from ROI.
“either_end” : either of the end-points is within tol from ROI
“both_end” : both end points are within tol from ROI.
- Returns
- outboolean
subsegment¶
-
dipy.tracking.utils.
subsegment
(streamlines, max_segment_length)¶ Splits the segments of the streamlines into small segments.
Replaces each segment of each of the streamlines with the smallest possible number of equally sized smaller segments such that no segment is longer than max_segment_length. Among other things, this can useful for getting streamline counts on a grid that is smaller than the length of the streamline segments.
- Parameters
- streamlinessequence of ndarrays
The streamlines to be subsegmented.
- max_segment_lengthfloat
The longest allowable segment length.
- Returns
- output_streamlinesgenerator
A set of streamlines.
Notes
Segments of 0 length are removed. If unchanged
Examples
>>> streamlines = [np.array([[0,0,0],[2,0,0],[5,0,0]])] >>> list(subsegment(streamlines, 3.)) [array([[ 0., 0., 0.], [ 2., 0., 0.], [ 5., 0., 0.]])] >>> list(subsegment(streamlines, 1)) [array([[ 0., 0., 0.], [ 1., 0., 0.], [ 2., 0., 0.], [ 3., 0., 0.], [ 4., 0., 0.], [ 5., 0., 0.]])] >>> list(subsegment(streamlines, 1.6)) [array([[ 0. , 0. , 0. ], [ 1. , 0. , 0. ], [ 2. , 0. , 0. ], [ 3.5, 0. , 0. ], [ 5. , 0. , 0. ]])]
target¶
-
dipy.tracking.utils.
target
(streamlines, affine, target_mask, include=True)¶ Filters streamlines based on whether or not they pass through an ROI.
- Parameters
- streamlinesiterable
A sequence of streamlines. Each streamline should be a (N, 3) array, where N is the length of the streamline.
- affinearray (4, 4)
The mapping between voxel indices and the point space for seeds. The voxel_to_rasmm matrix, typically from a NIFTI file.
- target_maskarray-like
A mask used as a target. Non-zero values are considered to be within the target region.
- includebool, default True
If True, streamlines passing through target_mask are kept. If False, the streamlines not passing through target_mask are kept.
- Returns
- streamlinesgenerator
A sequence of streamlines that pass through target_mask.
- Raises
- ValueError
When the points of the streamlines lie outside of the target_mask.
See also
target_line_based¶
-
dipy.tracking.utils.
target_line_based
(streamlines, affine, target_mask, include=True)¶ Filters streamlines based on whether or not they pass through a ROI, using a line-based algorithm. Mostly used as a replacement of target for compressed streamlines.
This function never returns single-point streamlines, whatever the value of include.
- Parameters
- streamlinesiterable
A sequence of streamlines. Each streamline should be a (N, 3) array, where N is the length of the streamline.
- affinearray (4, 4)
The mapping between voxel indices and the point space for seeds. The voxel_to_rasmm matrix, typically from a NIFTI file.
- target_maskarray-like
A mask used as a target. Non-zero values are considered to be within the target region.
- includebool, default True
If True, streamlines passing through target_mask are kept. If False, the streamlines not passing through target_mask are kept.
- Returns
- streamlinesgenerator
A sequence of streamlines that pass through target_mask.
References
- [Bresenham5] Bresenham, Jack Elton. “Algorithm for computer control of a
digital plotter”, IBM Systems Journal, vol 4, no. 1, 1965.
- [Houde15] Houde et al. How to avoid biased streamlines-based metrics for
streamlines with variable step sizes, ISMRM 2015.
transform_tracking_output¶
-
dipy.tracking.utils.
transform_tracking_output
(tracking_output, affine, save_seeds=False)¶ Applies a linear transformation, given by affine, to streamlines. Parameters ———- streamlines : Streamlines generator
Either streamlines (list, ArraySequence) or a tuple with streamlines and seeds together
- affinearray (4, 4)
The mapping between voxel indices and the point space for seeds. The voxel_to_rasmm matrix, typically from a NIFTI file.
- seeding_activatedbool, optional
If set, seeds associated to streamlines will be also moved and returned
- streamlinesgenerator
A sequence of transformed streamlines. If return_seeds is True, also return seeds
unique_rows¶
-
dipy.tracking.utils.
unique_rows
(in_array, dtype='f4')¶ This (quickly) finds the unique rows in an array
- Parameters
- in_array: ndarray
The array for which the unique rows should be found
- dtype: str, optional
This determines the intermediate representation used for the values. Should at least preserve the values of the input array.
- Returns
- u_return: ndarray
Array with the unique rows of the original array.
wraps¶
-
dipy.tracking.utils.
wraps
(wrapped, assigned=('__module__', '__name__', '__qualname__', '__doc__', '__annotations__'), updated=('__dict__', ))¶ Decorator factory to apply update_wrapper() to a wrapper function
Returns a decorator that invokes update_wrapper() with the decorated function as the wrapper argument and the arguments to wraps() as the remaining arguments. Default arguments are as for update_wrapper(). This is a convenience function to simplify applying partial() to update_wrapper().