dipy_fit_dti¶
- usage: dipy_fit_dti [-h] [–b0_threshold float] [–bvecs_tol float]
[–save_metrics [str [str …]]] [–out_dir str] [–out_tensor str] [–out_fa str] [–out_ga str] [–out_rgb str] [–out_md str] [–out_ad str] [–out_rd str] [–out_mode str] [–out_evec str] [–out_eval str] [–nifti_tensor] input_files bvalues_files bvectors_files mask_files
Workflow for tensor reconstruction and for computing DTI metrics. using Weighted Least-Squares. Performs a tensor reconstruction on the files by ‘globing’ input_files
and saves the DTI metrics in a directory specified by out_dir
.
- positional arguments:
input_files Path to the input volumes. This path may contain wildcards to process multiple inputs at once. bvalues_files Path to the bvalues files. This path may contain wildcards to use multiple bvalues files at once. bvectors_files Path to the bvectors files. This path may contain wildcards to use multiple bvectors files at once. mask_files Path to the input masks. This path may contain wildcards to use multiple masks at once.
- optional arguments:
- -h, --help
show this help message and exit
- --b0_threshold float
Threshold used to find b=0 directions (default 0.0)
- --bvecs_tol float
Threshold used to check that norm(bvec) = 1 +/- bvecs_tol b-vectors are unit vectors (default 0.01)
- –save_metrics [str [str …]]
List of metrics to save. Possible values: fa, ga, rgb, md, ad, rd, mode, tensor, evec, eval (default [] (all))
- --nifti_tensor
Whether the tensor is saved in the standard Nifti format or in an alternate format that is used by other software (e.g., FSL): a 4-dimensional volume (shape (i, j, k, 6)) with Dxx, Dxy, Dxz, Dyy, Dyz, Dzz on the last dimension. Default: True
- output arguments(optional):
- --out_dir str
Output directory (default input file directory)
- --out_tensor str
Name of the tensors volume to be saved (default ‘tensors.nii.gz’). Per default, this will be saved following the nifti standard: with the tensor elements as Dxx, Dxy, Dyy, Dxz, Dyz, Dzz on the last (5th) dimension of the volume (shape: (i, j, k, 1, 6)). If nifti_tensor is False, this will be saved in an alternate format that is used by other software (e.g., FSL): a 4-dimensional volume (shape (i, j, k, 6)) with Dxx, Dxy, Dxz, Dyy, Dyz, Dzz on the last dimension.
- --out_fa str
Name of the fractional anisotropy volume to be saved (default ‘fa.nii.gz’)
- --out_ga str
Name of the geodesic anisotropy volume to be saved (default ‘ga.nii.gz’)
- --out_rgb str
Name of the color fa volume to be saved (default ‘rgb.nii.gz’)
- --out_md str
Name of the mean diffusivity volume to be saved (default ‘md.nii.gz’)
- --out_ad str
Name of the axial diffusivity volume to be saved (default ‘ad.nii.gz’)
- --out_rd str
Name of the radial diffusivity volume to be saved (default ‘rd.nii.gz’)
- --out_mode str
Name of the mode volume to be saved (default ‘mode.nii.gz’)
- --out_evec str
Name of the eigenvectors volume to be saved (default ‘evecs.nii.gz’)
- --out_eval str
Name of the eigenvalues to be saved (default ‘evals.nii.gz’)
References: .. [1] Basser, P.J., Mattiello, J., LeBihan, D., 1994. Estimation of the effective self-diffusion tensor from the NMR spin echo. J Magn Reson B 103, 247-254. .. [2] Basser, P., Pierpaoli, C., 1996. Microstructural and physiological features of tissues elucidated by quantitative diffusion-tensor MRI. Journal of Magnetic Resonance 111, 209-219. .. [3] Lin-Ching C., Jones D.K., Pierpaoli, C. 2005. RESTORE: Robust estimation of tensors by outlier rejection. MRM 53: 1088-1095 .. [4] hung, SW., Lu, Y., Henry, R.G., 2006. Comparison of bootstrap approaches for estimation of uncertainties of DTI parameters. NeuroImage 33, 531-541. Garyfallidis, E., M. Brett, B. Amirbekian, A. Rokem, S. Van Der Walt, M. Descoteaux, and I. Nimmo-Smith. Dipy, a library for the analysis of diffusion MRI data. Frontiers in Neuroinformatics, 1-18, 2014.