dipy_slr¶
- usage: dipy_slr [-h] [–x0 str] [–rm_small_clusters int]
[–qbx_thr [int [int …]]] [–num_threads int] [–greater_than int] [–less_than int] [–nb_pts int] [–progressive] [–out_dir str] [–out_moved str] [–out_affine str] [–out_stat_centroids str] [–out_moving_centroids str] [–out_moved_centroids str] static_files moving_files
Streamline-based linear registration.
For efficiency we apply the registration on cluster centroids and remove small clusters.
- positional arguments:
static_files moving_files
- optional arguments:
- -h, --help
show this help message and exit
- --x0 str
rigid, similarity or affine transformation model (default affine)
- --rm_small_clusters int
Remove clusters that have less than rm_small_clusters (default 50)
- –qbx_thr [int [int …]]
Thresholds for QuickBundlesX (default [40, 30, 20, 15])
- --num_threads int
Number of threads. If None (default) then all available threads will be used. Only metrics using OpenMP will use this variable.
- --greater_than int
Keep streamlines that have length greater than this value (default 50)
- --less_than int
Keep streamlines have length less than this value (default 250)
- --nb_pts int
Number of points for discretizing each streamline (default 20)
- --progressive
(default True)
- output arguments(optional):
- --out_dir str
Output directory (default input file directory)
- --out_moved str
Filename of moved tractogram (default ‘moved.trk’)
- --out_affine str
Filename of affine for SLR transformation (default ‘affine.txt’)
- --out_stat_centroids str
Filename of static centroids (default ‘static_centroids.trk’)
- --out_moving_centroids str
Filename of moving centroids (default ‘moving_centroids.trk’)
- --out_moved_centroids str
Filename of moved centroids (default ‘moved_centroids.trk’)
References: .. [Garyfallidis15] Garyfallidis et al. “Robust and efficient linearregistration of white-matter fascicles in the space ofstreamlines”, NeuroImage, 117, 124–140, 2015 .. [Garyfallidis14] Garyfallidis et al., “Direct native-space fiberbundle alignment for group comparisons”, ISMRM, 2014. .. [Garyfallidis17] Garyfallidis et al. Recognition of white matterbundles using local and global streamline-based registrationand clustering, NeuroImage, 2017. Garyfallidis, E., M. Brett, B. Amirbekian, A. Rokem, S. Van Der Walt, M. Descoteaux, and I. Nimmo-Smith. Dipy, a library for the analysis of diffusion MRI data. Frontiers in Neuroinformatics, 1-18, 2014.