dipy_bundlewarp#
Usage#
- dipy_bundlewarp [-h] [–dist str] [–alpha float] [–beta int] [–max_iter int] [–affine] [–out_dir str] [–out_linear_moved str]
[–out_nonlinear_moved str] [–out_warp_transform str] [–out_warp_kernel str] [–out_dist str] [–out_matched_pairs str] static_file moving_file
BundleWarp: streamline-based nonlinear registration.
BundleWarp is nonrigid registration method for deformable registration of white matter tracts.
Positional Arguments#
static_file Path to the static (reference) .trk file. moving_file Path to the moving (target to be registered) .trk file.
- options:
- -h, --help
show this help message and exit
- --dist str
Path to the precalculated distance matrix file.
- --alpha float
Represents the trade-off between regularizing the deformation and having points match very closely. Lower value of alpha means high deformations. It is represented with λ in BundleWarp paper. NOTE: setting alpha<=0.01 will result in highly deformable registration that could extremely modify the original anatomy of the moving bundle. (default 0.3)
- --beta int
Represents the strength of the interaction between points Gaussian kernel size. (default 20)
- --max_iter int
Maximum number of iterations for deformation process in ml-CPD method. (default 15)
- --affine
If False, use rigid registration as starting point. (default True)
Output Arguments(Optional)#
- --out_dir str
Output directory. (default current directory)
- --out_linear_moved str
Filename of linearly moved bundle.
- --out_nonlinear_moved str
Filename of nonlinearly moved (warped) bundle.
- --out_warp_transform str
Filename of warp transformations generated by BundleWarp.
- --out_warp_kernel str
Filename of regularization gaussian kernel generated by BundleWarp.
- --out_dist str
Filename of MDF distance matrix.
- --out_matched_pairs str
Filename of matched pairs; treamline correspondences between two bundles.
References#
[Chandio2023]Chandio et al. “BundleWarp, streamline-based nonlinear registration of white matter tracts.” bioRxiv (2023): 2023-01.
Garyfallidis, E., M. Brett, B. Amirbekian, A. Rokem, S. Van Der Walt, M. Descoteaux, and I. Nimmo-Smith. Dipy, a library for the analysis of diffusion MRI data. Frontiers in Neuroinformatics, 1-18, 2014.