dipy_denoise_patch2self#
Usage#
- dipy_denoise_patch2self [-h] [–model str] [–b0_threshold int] [–alpha float] [–verbose] [–patch_radius [int …]] [–b0_denoising]
[–clip_negative_vals] [–shift_intensity] [–out_dir str] [–out_denoised str] input_files bval_files
Workflow for Patch2Self denoising method.
It applies patch2self denoising on each file found by ‘globing’ input_file
and bval_file
. It saves the results in a directory specified by out_dir
.
Positional Arguments#
input_files Path to the input volumes. This path may contain wildcards to process multiple inputs at once. bval_files bval file associated with the diffusion data.
- options:
- -h, --help
show this help message and exit
- --model str
This will determine the algorithm used to solve the set of linear equations underlying this model. If it is a string it needs to be one of the following: {‘ols’, ‘ridge’, ‘lasso’}. Otherwise, it can be an object that inherits from dipy.optimize.SKLearnLinearSolver or an object with a similar interface from Scikit-Learn: sklearn.linear_model.LinearRegression, sklearn.linear_model.Lasso or sklearn.linear_model.Ridge and other objects that inherit from sklearn.base.RegressorMixin. Default: ‘ols’.
- --b0_threshold int
Threshold for considering volumes as b0.
- --alpha float
Regularization parameter only for ridge regression model.
- --verbose
Show progress of Patch2Self and time taken.
- –patch_radius [int …]
The radius of the local patch to be taken around each voxel
- --b0_denoising
Skips denoising b0 volumes if set to False.
- --clip_negative_vals
Sets negative values after denoising to 0 using np.clip.
- --shift_intensity
Shifts the distribution of intensities per volume to give non-negative values
Output Arguments(Optional)#
- --out_dir str
Output directory (default current directory)
- --out_denoised str
Name of the resulting denoised volume (default: dwi_patch2self.nii.gz)
References#
Garyfallidis, E., M. Brett, B. Amirbekian, A. Rokem, S. Van Der Walt, M. Descoteaux, and I. Nimmo-Smith. Dipy, a library for the analysis of diffusion MRI data. Frontiers in Neuroinformatics, 1-18, 2014.