io
#
Module: io.dpy
#
A class for handling large tractography datasets.
It is built using the h5py which in turn implement key features of the HDF5 (hierarchical data format) API [1].
References#
|
Module: io.gradients
#
|
Read b-values and b-vectors from disk. |
Module: io.image
#
|
Load only the data array from a nifti file. |
|
Load data and other information from a nifti file. |
|
Save a data array into a nifti file. |
|
Save Quality Assurance metrics. |
Module: io.peaks
#
|
Load a PeaksAndMetrics HDF5 file (PAM5). |
|
Load a PeaksAndMetrics HDF5 file (PAM5). |
|
Save PeaksAndMetrics object attributes in a PAM5 file (HDF5). |
|
Save all important attributes of object PeaksAndMetrics in a PAM5 file (HDF5). |
|
Save SH, directions, indices and values of peaks to Nifti. |
|
Save SH, directions, indices and values of peaks to Nifti. |
|
Return SH, directions, indices and values of peaks to pam5. |
|
Convert diffusion tensor to pam5. |
Module: io.pickles
#
Load and save pickles
|
Save dix to fname as pickle. |
|
Load object from pickle file fname. |
Module: io.stateful_tractogram
#
|
Enum to simplify future change to convention |
|
Enum to simplify future change to convention |
|
Class for stateful representation of collections of streamlines Object designed to be identical no matter the file format (trk, tck, vtk, fib, dpy). |
Module: io.streamline
#
|
Save the stateful tractogram in any format (trk/tck/vtk/vtp/fib/dpy) |
|
Load the stateful tractogram from any format (trk/tck/vtk/vtp/fib/dpy) |
|
Generate a loading function that performs a file extension check to restrict the user to a single file format. |
|
Generate a saving function that performs a file extension check to restrict the user to a single file format. |
|
Load the stateful tractogram of the .trk format |
|
Load the stateful tractogram of the .tck format |
|
Load the stateful tractogram of the .trx format |
|
Load the stateful tractogram of the .vtk format |
|
Load the stateful tractogram of the .vtp format |
|
Load the stateful tractogram of the .fib format |
|
Load the stateful tractogram of the .dpy format |
|
Save the stateful tractogram of the .trk format |
|
Save the stateful tractogram of the .tck format |
|
Save the stateful tractogram of the .trx format |
|
Save the stateful tractogram of the .vtk format |
|
Save the stateful tractogram of the .vtp format |
|
Save the stateful tractogram of the .fib format |
|
Save the stateful tractogram of the .dpy format |
Module: io.surface
#
|
Load pial file. |
|
Load gifti file. |
Module: io.utils
#
Utility functions for file formats
|
Returns a Nifti1Image with a symmetric matrix intent |
|
reshapes the input to have 5 dimensions, adds extra dimensions just before the last dimension |
|
Create a nifti-compliant directional-encoded color FA image. |
|
Convert a nifti-compliant directional-encoded color FA image into a nifti image with RGB encoded in floating point resolution. |
|
Validate basic data type and value of spatial attribute. |
|
Returns the clean basename and extension of a file. |
|
Will compare the spatial attribute of 2 references. |
|
Will compare the spatial attribute of 2 references |
|
Write a standard trk/tck header from spatial attribute |
|
Write a standard nifti header from spatial attribute |
|
Saves the given input dataframe to .h5 file |
|
Helper function that handles inputs that can be paths, nifti img or arrays |
Module: io.vtk
#
|
Load a vtk polydata to a supported format file. |
|
Save a vtk polydata to a supported format file. |
|
Save streamlines as vtk polydata to a supported format file. |
|
Load streamlines from vtk polydata. |
Dpy
#
- class dipy.io.dpy.Dpy(fname, *, mode='r', compression=0)[source]#
Bases:
object
Methods
read one track each time
read the entire tractography
read_tracksi
(indices)read tracks with specific indices
write_track
(track)write on track each time
write_tracks
(tracks)write many tracks together
close
version
read_bvals_bvecs#
- dipy.io.gradients.read_bvals_bvecs(fbvals, fbvecs)[source]#
Read b-values and b-vectors from disk.
- Parameters:
- fbvalsstr
Full path to file with b-values. None to not read bvals.
- fbvecsstr
Full path of file with b-vectors. None to not read bvecs.
- Returns:
- bvalsarray, (N,) or None
- bvecsarray, (N, 3) or None
Notes
Files can be either ‘.bvals’/’.bvecs’ or ‘.txt’ or ‘.npy’ (containing arrays stored with the appropriate values).
load_nifti_data#
- dipy.io.image.load_nifti_data(fname, *, as_ndarray=True)[source]#
Load only the data array from a nifti file.
- Parameters:
- fnamestr
Full path to the file.
- as_ndarray: bool, optional
convert nibabel ArrayProxy to a numpy.ndarray. If you want to save memory and delay this casting, just turn this option to False.
- Returns:
- data: np.ndarray or nib.ArrayProxy
See also
load_nifti#
- dipy.io.image.load_nifti(fname, *, return_img=False, return_voxsize=False, return_coords=False, as_ndarray=True)[source]#
Load data and other information from a nifti file.
- Parameters:
- fnamestr
Full path to a nifti file.
- return_imgbool, optional
Whether to return the nibabel nifti img object.
- return_voxsize: bool, optional
Whether to return the nifti header zooms.
- return_coordsbool, optional
Whether to return the nifti header aff2axcodes.
- as_ndarray: bool, optional
convert nibabel ArrayProxy to a numpy.ndarray. If you want to save memory and delay this casting, just turn this option to False.
- Returns:
- A tuple, with (at the most, if all keyword args are set to True):
- (data, img.affine, img, vox_size, nib.aff2axcodes(img.affine))
See also
save_nifti#
- dipy.io.image.save_nifti(fname, data, affine, *, hdr=None, dtype=None)[source]#
Save a data array into a nifti file.
- Parameters:
- fnamestr
The full path to the file to be saved.
- datandarray
The array with the data to save.
- affine4x4 array
The affine transform associated with the file.
- hdrnifti header, optional
May contain additional information to store in the file header.
- Returns:
- None
save_qa_metric#
load_peaks#
- dipy.io.peaks.load_peaks(fname, *, verbose=False)[source]#
Load a PeaksAndMetrics HDF5 file (PAM5).
dipy.io.peaks.load_peaks is deprecated, Please usedipy.io.peaks.load_pam instead
deprecated from version: 1.10
Will raise <class ‘dipy.utils.deprecator.ExpiredDeprecationError’> as of version: 1.12
- Parameters:
- fnamestring
Filename of PAM5 file.
- verbosebool
Print summary information about the loaded file.
- Returns:
- pamPeaksAndMetrics object
load_pam#
save_peaks#
- dipy.io.peaks.save_peaks(fname, pam, *, affine=None, verbose=False)[source]#
Save PeaksAndMetrics object attributes in a PAM5 file (HDF5).
dipy.io.peaks.save_peaks is deprecated, Please usedipy.io.peaks.save_pam instead
deprecated from version: 1.10.0
Will raise <class ‘dipy.utils.deprecator.ExpiredDeprecationError’> as of version: 1.12.0
- Parameters:
- fnamestring
Filename of PAM5 file.
- pamPeaksAndMetrics
Object holding peak_dirs, shm_coeffs and other attributes.
- affinearray
The 4x4 matrix transforming the date from native to world coordinates. PeaksAndMetrics should have that attribute but if not it can be provided here. Default None.
- verbosebool
Print summary information about the saved file.
save_pam#
- dipy.io.peaks.save_pam(fname, pam, *, affine=None, verbose=False)[source]#
Save all important attributes of object PeaksAndMetrics in a PAM5 file (HDF5).
- Parameters:
- fnamestr
Filename of PAM5 file.
- pamPeaksAndMetrics
Object holding peaks information and metrics.
- affinendarray, optional
The 4x4 matrix transforming the date from native to world coordinates. PeaksAndMetrics should have that attribute but if not it can be provided here.
- verbosebool, optional
Print summary information about the saved file.
peaks_to_niftis#
- dipy.io.peaks.peaks_to_niftis(pam, fname_shm, fname_dirs, fname_values, fname_indices, *, fname_gfa=None, reshape_dirs=False)[source]#
Save SH, directions, indices and values of peaks to Nifti.
dipy.io.peaks.peaks_to_niftis is deprecated, Please use dipy.io.peaks.pam_to_niftis instead
deprecated from version: 1.10.0
Will raise <class ‘dipy.utils.deprecator.ExpiredDeprecationError’> as of version: 1.12.0
- Parameters:
- pamPeaksAndMetrics
Object holding peaks information and metrics.
- fname_shmstr
Spherical Harmonics coefficients filename.
- fname_dirsstr
Peaks direction filename.
- fname_valuesstr
Peaks values filename.
- fname_indicesstr
Peaks indices filename.
- fname_gfastr, optional
Generalized FA filename.
- reshape_dirsbool, optional
If True, reshape peaks for visualization.
pam_to_niftis#
- dipy.io.peaks.pam_to_niftis(pam, *, fname_peaks_dir='peaks_dirs.nii.gz', fname_peaks_values='peaks_values.nii.gz', fname_peaks_indices='peaks_indices.nii.gz', fname_shm='shm.nii.gz', fname_gfa='gfa.nii.gz', fname_sphere='sphere.txt', fname_b='B.nii.gz', fname_qa='qa.nii.gz', reshape_dirs=False)[source]#
Save SH, directions, indices and values of peaks to Nifti.
- Parameters:
- pamPeaksAndMetrics
Object holding peaks information and metrics.
- fname_peaks_dirstr, optional
Peaks direction filename.
- fname_peaks_valuesstr, optional
Peaks values filename.
- fname_peaks_indicesstr, optional
Peaks indices filename.
- fname_shmstr, optional
Spherical Harmonics coefficients filename. It will be saved if available.
- fname_gfastr, optional
Generalized FA filename. It will be saved if available.
- fname_spherestr, optional
Sphere vertices filename. It will be saved if available.
- fname_bstr, optional
B Matrix filename. Matrix that transforms spherical harmonics to spherical function. It will be saved if available.
- fname_qastr, optional
Quantitative Anisotropy filename. It will be saved if available.
- reshape_dirsbool, optional
If True, Reshape and convert to float32 a set of peaks for visualisation with mrtrix or the fibernavigator.
niftis_to_pam#
- dipy.io.peaks.niftis_to_pam(affine, peak_dirs, peak_values, peak_indices, *, shm_coeff=None, sphere=None, gfa=None, B=None, qa=None, odf=None, total_weight=None, ang_thr=None, pam_file=None)[source]#
Return SH, directions, indices and values of peaks to pam5.
- Parameters:
- affinearray, (4, 4)
The matrix defining the affine transform.
- peak_dirsndarray
The direction of each peak.
- peak_valuesndarray
The value of the peaks.
- peak_indicesndarray
Indices (in sphere vertices) of the peaks in each voxel.
- shm_coeffarray, optional
Spherical harmonics coefficients.
- sphereSphere class instance, optional
The sphere providing discrete directions for evaluation.
- gfandarray, optional
Generalized FA volume.
- Bndarray, optional
Matrix that transforms spherical harmonics to spherical function.
- qaarray, optional
Quantitative Anisotropy in each voxel.
- odfndarray, optional
SH coefficients for the ODF spherical function.
- total_weightfloat, optional
Total weight of the peaks.
- ang_thrfloat, optional
Angular threshold of the peaks.
- pam_filestr, optional
Filename of the desired pam file.
- Returns:
- pamPeaksAndMetrics
Object holding peak_dirs, shm_coeffs and other attributes.
tensor_to_pam#
- dipy.io.peaks.tensor_to_pam(evals, evecs, affine, *, shm_coeff=None, sphere=None, gfa=None, B=None, qa=None, odf=None, total_weight=None, ang_thr=None, pam_file=None, npeaks=5, generate_peaks_indices=True)[source]#
Convert diffusion tensor to pam5.
- Parameters:
- evalsndarray
Eigenvalues of a diffusion tensor. shape should be (…,3).
- evecsndarray
Eigen vectors from the tensor model.
- affinearray, (4, 4)
The matrix defining the affine transform.
- shm_coeffarray, optional
Spherical harmonics coefficients.
- sphereSphere class instance, optional
The sphere providing discrete directions for evaluation.
- gfandarray, optional
Generalized FA volume.
- Bndarray, optional
Matrix that transforms spherical harmonics to spherical function.
- qaarray, optional
Quantitative Anisotropy in each voxel.
- odfndarray, optional
SH coefficients for the ODF spherical function.
- pam_filestr, optional
Filename of the desired pam file.
- npeaksint, optional
Maximum number of peaks found.
- generate_peaks_indicesbool, optional
- total_weightfloat, optional
Total weight of the peaks.
- ang_thrfloat, optional
Angular threshold of the peaks.
- Returns:
- pamPeaksAndMetrics
Object holding peaks information and metrics.
save_pickle#
- dipy.io.pickles.save_pickle(fname, dix)[source]#
Save dix to fname as pickle.
- Parameters:
- fnamestr
filename to save object e.g. a dictionary
- dixstr
dictionary or other object
See also
Examples
>>> import os >>> from tempfile import mkstemp >>> fd, fname = mkstemp() # make temporary file (opened, attached to fh) >>> d={0:{'d':1}} >>> save_pickle(fname, d) >>> d2=load_pickle(fname)
We remove the temporary file we created for neatness
>>> os.close(fd) # the file is still open, we need to close the fh >>> os.remove(fname)
load_pickle#
Space
#
Origin
#
StatefulTractogram
#
- class dipy.io.stateful_tractogram.StatefulTractogram(streamlines, reference, space, *, origin=Origin.NIFTI, data_per_point=None, data_per_streamline=None)[source]#
Bases:
object
Class for stateful representation of collections of streamlines Object designed to be identical no matter the file format (trk, tck, vtk, fib, dpy). Facilitate transformation between space and data manipulation for each streamline / point.
- Attributes:
affine
Getter for the reference affine
data_per_point
Getter for data_per_point
data_per_streamline
Getter for data_per_streamline
dimensions
Getter for the reference dimensions
dtype_dict
Getter for dtype_dict
origin
Getter for origin standard
space
Getter for the current space
space_attributes
Getter for spatial attribute
streamlines
Partially safe getter for streamlines
voxel_order
Getter for the reference voxel order
voxel_sizes
Getter for the reference voxel sizes
Methods
are_compatible
(sft_1, sft_2)Compatibility verification of two StatefulTractogram to ensure space, origin, data_per_point and data_per_streamline consistency
Compute the bounding box of the streamlines in their current state
from_sft
(streamlines, sft, *[, ...])Create an instance of StatefulTractogram from another instance of StatefulTractogram.
Return a list of the data_per_point attribute names
Return a list of the data_per_streamline attribute names
Safe getter for streamlines (for slicing)
Verify that the bounding box is valid in voxel space.
remove_invalid_streamlines
(*[, epsilon])Remove streamlines with invalid coordinates from the object.
Safe function to shift streamlines so the center of voxel is the origin
Safe function to shift streamlines so the corner of voxel is the origin
to_origin
(target_origin)Safe function to change streamlines to a particular origin standard False means NIFTI (center) and True means TrackVis (corner)
to_rasmm
()Safe function to transform streamlines and update state
to_space
(target_space)Safe function to transform streamlines to a particular space using an enum and update state
to_vox
()Safe function to transform streamlines and update state
to_voxmm
()Safe function to transform streamlines and update state
- property affine#
Getter for the reference affine
- static are_compatible(sft_1, sft_2)[source]#
Compatibility verification of two StatefulTractogram to ensure space, origin, data_per_point and data_per_streamline consistency
- compute_bounding_box()[source]#
Compute the bounding box of the streamlines in their current state
- Returns:
- outputndarray
8 corners of the XYZ aligned box, all zeros if no streamlines
- property data_per_point#
Getter for data_per_point
- property data_per_streamline#
Getter for data_per_streamline
- property dimensions#
Getter for the reference dimensions
- property dtype_dict#
Getter for dtype_dict
- static from_sft(streamlines, sft, *, data_per_point=None, data_per_streamline=None)[source]#
Create an instance of StatefulTractogram from another instance of StatefulTractogram.
- Parameters:
- streamlineslist or ArraySequence
Streamlines of the tractogram
- sftStatefulTractogram,
The other StatefulTractogram to copy the space_attribute AND state from.
- data_per_pointdict, optional
Dictionary in which each key has X items, each items has Y_i items X being the number of streamlines Y_i being the number of points on streamlines #i
- data_per_streamlinedict, optional
Dictionary in which each key has X items X being the number of streamlines
- —–
- is_bbox_in_vox_valid()[source]#
Verify that the bounding box is valid in voxel space. Negative coordinates or coordinates above the volume dimensions are considered invalid in voxel space.
- Returns:
- outputbool
Are the streamlines within the volume of the associated reference
- property origin#
Getter for origin standard
- remove_invalid_streamlines(*, epsilon=0.001)[source]#
Remove streamlines with invalid coordinates from the object. Will also remove the data_per_point and data_per_streamline. Invalid coordinates are any X,Y,Z values above the reference dimensions or below zero
- Parameters:
- epsilonfloat, optional
Epsilon value for the bounding box verification. Default is 1e-6.
- Returns:
- outputtuple
Tuple of two list, indices_to_remove, indices_to_keep
- property space#
Getter for the current space
- property space_attributes#
Getter for spatial attribute
- property streamlines#
Partially safe getter for streamlines
- to_origin(target_origin)[source]#
Safe function to change streamlines to a particular origin standard False means NIFTI (center) and True means TrackVis (corner)
- to_space(target_space)[source]#
Safe function to transform streamlines to a particular space using an enum and update state
- property voxel_order#
Getter for the reference voxel order
- property voxel_sizes#
Getter for the reference voxel sizes
save_tractogram#
- dipy.io.streamline.save_tractogram(sft, filename, *, bbox_valid_check=True)[source]#
Save the stateful tractogram in any format (trk/tck/vtk/vtp/fib/dpy)
- Parameters:
- sftStatefulTractogram
The stateful tractogram to save
- filenamestring
Filename with valid extension
- bbox_valid_checkbool
Verification for negative voxel coordinates or values above the volume dimensions. Default is True, to enforce valid file.
- Returns:
- outputbool
True if the saving operation was successful
load_tractogram#
- dipy.io.streamline.load_tractogram(filename, reference, *, to_space=Space.RASMM, to_origin=Origin.NIFTI, bbox_valid_check=True, trk_header_check=True)[source]#
Load the stateful tractogram from any format (trk/tck/vtk/vtp/fib/dpy)
- Parameters:
- filenamestring
Filename with valid extension
- referenceNifti or Trk filename, Nifti1Image or TrkFile, Nifti1Header or
trk.header (dict), or ‘same’ if the input is a trk file. Reference that provides the spatial attribute. Typically a nifti-related object from the native diffusion used for streamlines generation
- to_spaceEnum (dipy.io.stateful_tractogram.Space)
Space to which the streamlines will be transformed after loading
- to_originEnum (dipy.io.stateful_tractogram.Origin)
- Origin to which the streamlines will be transformed after loading
NIFTI standard, default (center of the voxel) TRACKVIS standard (corner of the voxel)
- bbox_valid_checkbool
Verification for negative voxel coordinates or values above the volume dimensions. Default is True, to enforce valid file.
- trk_header_checkbool
Verification that the reference has the same header as the spatial attributes as the input tractogram when a Trk is loaded
- Returns:
- outputStatefulTractogram
The tractogram to load (must have been saved properly)
load_generator#
- dipy.io.streamline.load_generator(ttype)[source]#
Generate a loading function that performs a file extension check to restrict the user to a single file format.
- Parameters:
- ttypestring
Extension of the file format that requires a loader
- Returns:
- outputfunction
Function (load_tractogram) that handle only one file format
save_generator#
- dipy.io.streamline.save_generator(ttype)[source]#
Generate a saving function that performs a file extension check to restrict the user to a single file format.
- Parameters:
- ttypestring
Extension of the file format that requires a saver
- Returns:
- outputfunction
Function (save_tractogram) that handle only one file format
load_trk#
- dipy.io.streamline.load_trk(filename, reference, *, to_space=Space.RASMM, to_origin=Origin.NIFTI, bbox_valid_check=True, trk_header_check=True)#
Load the stateful tractogram of the .trk format
- Parameters:
- filenamestring
Filename with valid extension
- referenceNifti or Trk filename, Nifti1Image or TrkFile, Nifti1Header or
trk.header (dict), or ‘same’ if the input is a trk file. Reference that provides the spatial attribute. Typically a nifti-related object from the native diffusion used for streamlines generation
- to_spaceEnum (dipy.io.stateful_tractogram.Space)
Space to which the streamlines will be transformed after loading
- to_originEnum (dipy.io.stateful_tractogram.Origin)
- Origin to which the streamlines will be transformed after loading
NIFTI standard, default (center of the voxel) TRACKVIS standard (corner of the voxel)
- bbox_valid_checkbool
Verification for negative voxel coordinates or values above the volume dimensions. Default is True, to enforce valid file.
- trk_header_checkbool
Verification that the reference has the same header as the spatial attributes as the input tractogram when a Trk is loaded
- Returns:
- outputStatefulTractogram
The tractogram to load (must have been saved properly)
load_tck#
- dipy.io.streamline.load_tck(filename, reference, *, to_space=Space.RASMM, to_origin=Origin.NIFTI, bbox_valid_check=True, trk_header_check=True)#
Load the stateful tractogram of the .tck format
- Parameters:
- filenamestring
Filename with valid extension
- referenceNifti or Trk filename, Nifti1Image or TrkFile, Nifti1Header or
trk.header (dict), or ‘same’ if the input is a trk file. Reference that provides the spatial attribute. Typically a nifti-related object from the native diffusion used for streamlines generation
- to_spaceEnum (dipy.io.stateful_tractogram.Space)
Space to which the streamlines will be transformed after loading
- to_originEnum (dipy.io.stateful_tractogram.Origin)
- Origin to which the streamlines will be transformed after loading
NIFTI standard, default (center of the voxel) TRACKVIS standard (corner of the voxel)
- bbox_valid_checkbool
Verification for negative voxel coordinates or values above the volume dimensions. Default is True, to enforce valid file.
- trk_header_checkbool
Verification that the reference has the same header as the spatial attributes as the input tractogram when a Trk is loaded
- Returns:
- outputStatefulTractogram
The tractogram to load (must have been saved properly)
load_trx#
- dipy.io.streamline.load_trx(filename, reference, *, to_space=Space.RASMM, to_origin=Origin.NIFTI, bbox_valid_check=True, trk_header_check=True)#
Load the stateful tractogram of the .trx format
- Parameters:
- filenamestring
Filename with valid extension
- referenceNifti or Trk filename, Nifti1Image or TrkFile, Nifti1Header or
trk.header (dict), or ‘same’ if the input is a trk file. Reference that provides the spatial attribute. Typically a nifti-related object from the native diffusion used for streamlines generation
- to_spaceEnum (dipy.io.stateful_tractogram.Space)
Space to which the streamlines will be transformed after loading
- to_originEnum (dipy.io.stateful_tractogram.Origin)
- Origin to which the streamlines will be transformed after loading
NIFTI standard, default (center of the voxel) TRACKVIS standard (corner of the voxel)
- bbox_valid_checkbool
Verification for negative voxel coordinates or values above the volume dimensions. Default is True, to enforce valid file.
- trk_header_checkbool
Verification that the reference has the same header as the spatial attributes as the input tractogram when a Trk is loaded
- Returns:
- outputStatefulTractogram
The tractogram to load (must have been saved properly)
load_vtk#
- dipy.io.streamline.load_vtk(filename, reference, *, to_space=Space.RASMM, to_origin=Origin.NIFTI, bbox_valid_check=True, trk_header_check=True)#
Load the stateful tractogram of the .vtk format
- Parameters:
- filenamestring
Filename with valid extension
- referenceNifti or Trk filename, Nifti1Image or TrkFile, Nifti1Header or
trk.header (dict), or ‘same’ if the input is a trk file. Reference that provides the spatial attribute. Typically a nifti-related object from the native diffusion used for streamlines generation
- to_spaceEnum (dipy.io.stateful_tractogram.Space)
Space to which the streamlines will be transformed after loading
- to_originEnum (dipy.io.stateful_tractogram.Origin)
- Origin to which the streamlines will be transformed after loading
NIFTI standard, default (center of the voxel) TRACKVIS standard (corner of the voxel)
- bbox_valid_checkbool
Verification for negative voxel coordinates or values above the volume dimensions. Default is True, to enforce valid file.
- trk_header_checkbool
Verification that the reference has the same header as the spatial attributes as the input tractogram when a Trk is loaded
- Returns:
- outputStatefulTractogram
The tractogram to load (must have been saved properly)
load_vtp#
- dipy.io.streamline.load_vtp(filename, reference, *, to_space=Space.RASMM, to_origin=Origin.NIFTI, bbox_valid_check=True, trk_header_check=True)#
Load the stateful tractogram of the .vtp format
- Parameters:
- filenamestring
Filename with valid extension
- referenceNifti or Trk filename, Nifti1Image or TrkFile, Nifti1Header or
trk.header (dict), or ‘same’ if the input is a trk file. Reference that provides the spatial attribute. Typically a nifti-related object from the native diffusion used for streamlines generation
- to_spaceEnum (dipy.io.stateful_tractogram.Space)
Space to which the streamlines will be transformed after loading
- to_originEnum (dipy.io.stateful_tractogram.Origin)
- Origin to which the streamlines will be transformed after loading
NIFTI standard, default (center of the voxel) TRACKVIS standard (corner of the voxel)
- bbox_valid_checkbool
Verification for negative voxel coordinates or values above the volume dimensions. Default is True, to enforce valid file.
- trk_header_checkbool
Verification that the reference has the same header as the spatial attributes as the input tractogram when a Trk is loaded
- Returns:
- outputStatefulTractogram
The tractogram to load (must have been saved properly)
load_fib#
- dipy.io.streamline.load_fib(filename, reference, *, to_space=Space.RASMM, to_origin=Origin.NIFTI, bbox_valid_check=True, trk_header_check=True)#
Load the stateful tractogram of the .fib format
- Parameters:
- filenamestring
Filename with valid extension
- referenceNifti or Trk filename, Nifti1Image or TrkFile, Nifti1Header or
trk.header (dict), or ‘same’ if the input is a trk file. Reference that provides the spatial attribute. Typically a nifti-related object from the native diffusion used for streamlines generation
- to_spaceEnum (dipy.io.stateful_tractogram.Space)
Space to which the streamlines will be transformed after loading
- to_originEnum (dipy.io.stateful_tractogram.Origin)
- Origin to which the streamlines will be transformed after loading
NIFTI standard, default (center of the voxel) TRACKVIS standard (corner of the voxel)
- bbox_valid_checkbool
Verification for negative voxel coordinates or values above the volume dimensions. Default is True, to enforce valid file.
- trk_header_checkbool
Verification that the reference has the same header as the spatial attributes as the input tractogram when a Trk is loaded
- Returns:
- outputStatefulTractogram
The tractogram to load (must have been saved properly)
load_dpy#
- dipy.io.streamline.load_dpy(filename, reference, *, to_space=Space.RASMM, to_origin=Origin.NIFTI, bbox_valid_check=True, trk_header_check=True)#
Load the stateful tractogram of the .dpy format
- Parameters:
- filenamestring
Filename with valid extension
- referenceNifti or Trk filename, Nifti1Image or TrkFile, Nifti1Header or
trk.header (dict), or ‘same’ if the input is a trk file. Reference that provides the spatial attribute. Typically a nifti-related object from the native diffusion used for streamlines generation
- to_spaceEnum (dipy.io.stateful_tractogram.Space)
Space to which the streamlines will be transformed after loading
- to_originEnum (dipy.io.stateful_tractogram.Origin)
- Origin to which the streamlines will be transformed after loading
NIFTI standard, default (center of the voxel) TRACKVIS standard (corner of the voxel)
- bbox_valid_checkbool
Verification for negative voxel coordinates or values above the volume dimensions. Default is True, to enforce valid file.
- trk_header_checkbool
Verification that the reference has the same header as the spatial attributes as the input tractogram when a Trk is loaded
- Returns:
- outputStatefulTractogram
The tractogram to load (must have been saved properly)
save_trk#
- dipy.io.streamline.save_trk(sft, filename, bbox_valid_check=True)#
Save the stateful tractogram of the .trk format
- Parameters:
- sftStatefulTractogram
The stateful tractogram to save
- filenamestring
Filename with valid extension
- bbox_valid_checkbool
Verification for negative voxel coordinates or values above the volume dimensions. Default is True, to enforce valid file.
- Returns:
- outputbool
True if the saving operation was successful
save_tck#
- dipy.io.streamline.save_tck(sft, filename, bbox_valid_check=True)#
Save the stateful tractogram of the .tck format
- Parameters:
- sftStatefulTractogram
The stateful tractogram to save
- filenamestring
Filename with valid extension
- bbox_valid_checkbool
Verification for negative voxel coordinates or values above the volume dimensions. Default is True, to enforce valid file.
- Returns:
- outputbool
True if the saving operation was successful
save_trx#
- dipy.io.streamline.save_trx(sft, filename, bbox_valid_check=True)#
Save the stateful tractogram of the .trx format
- Parameters:
- sftStatefulTractogram
The stateful tractogram to save
- filenamestring
Filename with valid extension
- bbox_valid_checkbool
Verification for negative voxel coordinates or values above the volume dimensions. Default is True, to enforce valid file.
- Returns:
- outputbool
True if the saving operation was successful
save_vtk#
- dipy.io.streamline.save_vtk(sft, filename, bbox_valid_check=True)#
Save the stateful tractogram of the .vtk format
- Parameters:
- sftStatefulTractogram
The stateful tractogram to save
- filenamestring
Filename with valid extension
- bbox_valid_checkbool
Verification for negative voxel coordinates or values above the volume dimensions. Default is True, to enforce valid file.
- Returns:
- outputbool
True if the saving operation was successful
save_vtp#
- dipy.io.streamline.save_vtp(sft, filename, bbox_valid_check=True)#
Save the stateful tractogram of the .vtp format
- Parameters:
- sftStatefulTractogram
The stateful tractogram to save
- filenamestring
Filename with valid extension
- bbox_valid_checkbool
Verification for negative voxel coordinates or values above the volume dimensions. Default is True, to enforce valid file.
- Returns:
- outputbool
True if the saving operation was successful
save_fib#
- dipy.io.streamline.save_fib(sft, filename, bbox_valid_check=True)#
Save the stateful tractogram of the .fib format
- Parameters:
- sftStatefulTractogram
The stateful tractogram to save
- filenamestring
Filename with valid extension
- bbox_valid_checkbool
Verification for negative voxel coordinates or values above the volume dimensions. Default is True, to enforce valid file.
- Returns:
- outputbool
True if the saving operation was successful
save_dpy#
- dipy.io.streamline.save_dpy(sft, filename, bbox_valid_check=True)#
Save the stateful tractogram of the .dpy format
- Parameters:
- sftStatefulTractogram
The stateful tractogram to save
- filenamestring
Filename with valid extension
- bbox_valid_checkbool
Verification for negative voxel coordinates or values above the volume dimensions. Default is True, to enforce valid file.
- Returns:
- outputbool
True if the saving operation was successful
load_pial#
- dipy.io.surface.load_pial(fname, *, return_meta=False)[source]#
Load pial file.
- Parameters:
- fnamestr
Absolute path of the file.
- return_metabool, optional
Whether to read the metadata of the file or not, by default False.
- Returns:
- tuple
(vertices, faces) if return_meta=False. Otherwise, (vertices, faces, metadata).
load_gifti#
nifti1_symmat#
- dipy.io.utils.nifti1_symmat(image_data, *args, **kwargs)[source]#
Returns a Nifti1Image with a symmetric matrix intent
- Parameters:
- image_dataarray-like
should have lower triangular elements of a symmetric matrix along the last dimension
- *args
Passed to Nifti1Image
- **kwargs
Passed to Nifti1Image
- Returns:
- imageNifti1Image
5d, extra dimensions added before the last. Has symmetric matrix intent code
make5d#
decfa#
- dipy.io.utils.decfa(img_orig, *, scale=False)[source]#
Create a nifti-compliant directional-encoded color FA image.
- Parameters:
- img_origNifti1Image class instance.
Contains encoding of the DEC FA image with a 4D volume of data, where the elements on the last dimension represent R, G and B components.
- scale: bool.
Whether to scale the incoming data from the 0-1 to the 0-255 range expected in the output.
- Returns:
- imgNifti1Image class instance with dtype set to store tuples of
uint8 in (R, G, B) order.
Notes
For a description of this format, see:
https://nifti.nimh.nih.gov/nifti-1/documentation/nifti1fields/nifti1fields_pages/datatype.html
decfa_to_float#
- dipy.io.utils.decfa_to_float(img_orig)[source]#
Convert a nifti-compliant directional-encoded color FA image into a nifti image with RGB encoded in floating point resolution.
- Parameters:
- img_origNifti1Image class instance.
Contains encoding of the DEC FA image with a 3D volume of data, where each element is a (R, G, B) tuple in uint8.
- Returns:
- imgNifti1Image class instance with float dtype.
Notes
For a description of this format, see:
https://nifti.nimh.nih.gov/nifti-1/documentation/nifti1fields/nifti1fields_pages/datatype.html
is_reference_info_valid#
- dipy.io.utils.is_reference_info_valid(affine, dimensions, voxel_sizes, voxel_order)[source]#
Validate basic data type and value of spatial attribute.
Does not ensure that voxel_sizes and voxel_order are self-coherent with the affine.
- Only verifies the following:
affine is of the right type (float) and dimension (4,4)
affine contain values in the rotation part
dimensions is of right type (int) and length (3)
voxel_sizes is of right type (float) and length (3)
voxel_order is of right type (str) and length (3)
The listed parameters are what is expected, provide something else and this function should fail (cover common mistakes).
- Parameters:
- affine: ndarray (4,4)
Transformation of VOX to RASMM
- dimensions: ndarray (3,), int16
Volume shape for each axis
- voxel_sizes: ndarray (3,), float32
Size of voxel for each axis
- voxel_order: string
Typically ‘RAS’ or ‘LPS’
- Returns:
- outputbool
Does the input represent a valid ‘state’ of spatial attribute
split_name_with_gz#
get_reference_info#
- dipy.io.utils.get_reference_info(reference)[source]#
Will compare the spatial attribute of 2 references.
- Parameters:
- referenceNifti or Trk filename, Nifti1Image or TrkFile, Nifti1Header or
trk.header (dict), TrxFile or trx.header (dict) Reference that provides the spatial attribute.
- Returns:
- outputtuple
affine ndarray (4,4), np.float32, transformation of VOX to RASMM
dimensions ndarray (3,), int16, volume shape for each axis
voxel_sizes ndarray (3,), float32, size of voxel for each axis
voxel_order, string, Typically ‘RAS’ or ‘LPS’
is_header_compatible#
- dipy.io.utils.is_header_compatible(reference_1, reference_2)[source]#
Will compare the spatial attribute of 2 references
- Parameters:
- reference_1Nifti or Trk filename, Nifti1Image or TrkFile,
Nifti1Header or trk.header (dict) Reference that provides the spatial attribute.
- reference_2Nifti or Trk filename, Nifti1Image or TrkFile,
Nifti1Header or trk.header (dict) Reference that provides the spatial attribute.
- Returns:
- outputbool
Does all the spatial attribute match
create_tractogram_header#
create_nifti_header#
save_buan_profiles_hdf5#
- dipy.io.utils.save_buan_profiles_hdf5(fname, dt, *, key=None)[source]#
Saves the given input dataframe to .h5 file
- Parameters:
- fnamestring
file name for saving the hdf5 file
- dtPandas DataFrame
DataFrame to be saved as .h5 file
- keystr, optional
Key to retrieve the contents in the HDF5 file. The file rootname will be used if not provided.
read_img_arr_or_path#
- dipy.io.utils.read_img_arr_or_path(data, *, affine=None)[source]#
Helper function that handles inputs that can be paths, nifti img or arrays
- Parameters:
- dataarray or nib.Nifti1Image or str.
Either as a 3D/4D array or as a nifti image object, or as a string containing the full path to a nifti file.
- affine4x4 array, optional.
Must be provided for data provided as an array. If provided together with Nifti1Image or str data, this input will over-ride the affine that is stored in the data input. Default: use the affine stored in data.
- Returns:
- data, affinendarray and 4x4 array
load_polydata#
save_polydata#
save_vtk_streamlines#
- dipy.io.vtk.save_vtk_streamlines(streamlines, filename, *, to_lps=True, binary=False)[source]#
Save streamlines as vtk polydata to a supported format file.
File formats can be OBJ, VTK, VTP, FIB, PLY, STL and XML
- Parameters:
- streamlineslist
list of 2D arrays or ArraySequence
- filenamestring
output filename (.obj, .vtk, .fib, .ply, .stl and .xml)
- to_lpsbool
Default to True, will follow the vtk file convention for streamlines Will be supported by MITKDiffusion and MI-Brain
- binarybool
save the file as binary
load_vtk_streamlines#
- dipy.io.vtk.load_vtk_streamlines(filename, *, to_lps=True)[source]#
Load streamlines from vtk polydata.
Load formats can be VTK, FIB
- Parameters:
- filenamestring
input filename (.vtk or .fib)
- to_lpsbool
Default to True, will follow the vtk file convention for streamlines Will be supported by MITKDiffusion and MI-Brain
- Returns:
- outputlist
list of 2D arrays