io#

Module: io.dpy#

A class for handling large tractography datasets.

It is built using the h5py which in turn implement key features of the HDF5 (hierarchical data format) API [1].

References#

Dpy(fname[, mode, compression])

Module: io.gradients#

read_bvals_bvecs(fbvals, fbvecs)

Read b-values and b-vectors from disk.

Module: io.image#

load_nifti_data(fname[, as_ndarray])

Load only the data array from a nifti file.

load_nifti(fname[, return_img, ...])

Load data and other information from a nifti file.

save_nifti(fname, data, affine[, hdr, dtype])

Save a data array into a nifti file.

save_qa_metric(fname, xopt, fopt)

Save Quality Assurance metrics.

Module: io.peaks#

load_peaks(fname[, verbose])

Load a PeaksAndMetrics HDF5 file (PAM5)

save_peaks(fname, pam[, affine, verbose])

Save all important attributes of object PeaksAndMetrics in a PAM5 file (HDF5).

peaks_to_niftis(pam, fname_shm, fname_dirs, ...)

Save SH, directions, indices and values of peaks to Nifti.

Module: io.pickles#

Load and save pickles

save_pickle(fname, dix)

Save dix to fname as pickle.

load_pickle(fname)

Load object from pickle file fname.

Module: io.stateful_tractogram#

Space(value)

Enum to simplify future change to convention

Origin(value)

Enum to simplify future change to convention

StatefulTractogram(streamlines, reference, space)

Class for stateful representation of collections of streamlines Object designed to be identical no matter the file format (trk, tck, vtk, fib, dpy).

logger

Instances of the Logger class represent a single logging channel.

set_sft_logger_level(log_level)

Change the logger of the StatefulTractogram to one on the following: DEBUG, INFO, WARNING, CRITICAL, ERROR

Module: io.streamline#

save_tractogram(sft, filename[, ...])

Save the stateful tractogram in any format (trk/tck/vtk/vtp/fib/dpy)

load_tractogram(filename, reference[, ...])

Load the stateful tractogram from any format (trk/tck/vtk/vtp/fib/dpy)

load_generator(ttype)

Generate a loading function that performs a file extension check to restrict the user to a single file format.

save_generator(ttype)

Generate a saving function that performs a file extension check to restrict the user to a single file format.

load_trk(filename, reference[, to_space, ...])

Load the stateful tractogram of the .trk format

load_tck(filename, reference[, to_space, ...])

Load the stateful tractogram of the .tck format

load_trx(filename, reference[, to_space, ...])

Load the stateful tractogram of the .trx format

load_vtk(filename, reference[, to_space, ...])

Load the stateful tractogram of the .vtk format

load_vtp(filename, reference[, to_space, ...])

Load the stateful tractogram of the .vtp format

load_fib(filename, reference[, to_space, ...])

Load the stateful tractogram of the .fib format

load_dpy(filename, reference[, to_space, ...])

Load the stateful tractogram of the .dpy format

save_trk(sft, filename[, bbox_valid_check])

Save the stateful tractogram of the .trk format

save_tck(sft, filename[, bbox_valid_check])

Save the stateful tractogram of the .tck format

save_trx(sft, filename[, bbox_valid_check])

Save the stateful tractogram of the .trx format

save_vtk(sft, filename[, bbox_valid_check])

Save the stateful tractogram of the .vtk format

save_vtp(sft, filename[, bbox_valid_check])

Save the stateful tractogram of the .vtp format

save_fib(sft, filename[, bbox_valid_check])

Save the stateful tractogram of the .fib format

save_dpy(sft, filename[, bbox_valid_check])

Save the stateful tractogram of the .dpy format

Module: io.surface#

load_pial(fname[, return_meta])

Load pial file.

load_gifti(fname)

Load gifti file.

Module: io.utils#

Utility functions for file formats

nifti1_symmat(image_data, *args, **kwargs)

Returns a Nifti1Image with a symmetric matrix intent

make5d(data)

reshapes the input to have 5 dimensions, adds extra dimensions just before the last dimension

decfa(img_orig[, scale])

Create a nifti-compliant directional-encoded color FA image.

decfa_to_float(img_orig)

Convert a nifti-compliant directional-encoded color FA image into a nifti image with RGB encoded in floating point resolution.

is_reference_info_valid(affine, dimensions, ...)

Validate basic data type and value of spatial attribute.

split_name_with_gz(filename)

Returns the clean basename and extension of a file.

get_reference_info(reference)

Will compare the spatial attribute of 2 references.

is_header_compatible(reference_1, reference_2)

Will compare the spatial attribute of 2 references

create_tractogram_header(tractogram_type, ...)

Write a standard trk/tck header from spatial attribute

create_nifti_header(affine, dimensions, ...)

Write a standard nifti header from spatial attribute

save_buan_profiles_hdf5(fname, dt)

Saves the given input dataframe to .h5 file

read_img_arr_or_path(data[, affine])

Helper function that handles inputs that can be paths, nifti img or arrays

Module: io.vtk#

load_polydata(file_name)

Load a vtk polydata to a supported format file.

save_polydata(polydata, file_name[, binary, ...])

Save a vtk polydata to a supported format file.

save_vtk_streamlines(streamlines, filename)

Save streamlines as vtk polydata to a supported format file.

load_vtk_streamlines(filename[, to_lps])

Load streamlines from vtk polydata.

Dpy#

class dipy.io.dpy.Dpy(fname, mode='r', compression=0)#

Bases: object

__init__(fname, mode='r', compression=0)#

Advanced storage system for tractography based on HDF5

Parameters#

fname : str, full filename mode : ‘r’ read

‘w’ write ‘r+’ read and write only if file already exists

compression : 0 no compression to 9 maximum compression

Examples#

>>> import os
>>> from tempfile import mkstemp #temp file
>>> from dipy.io.dpy import Dpy
>>> def dpy_example():
...     fd,fname = mkstemp()
...     fname += '.dpy'#add correct extension
...     dpw = Dpy(fname,'w')
...     A=np.ones((5,3))
...     B=2*A.copy()
...     C=3*A.copy()
...     dpw.write_track(A)
...     dpw.write_track(B)
...     dpw.write_track(C)
...     dpw.close()
...     dpr = Dpy(fname,'r')
...     dpr.read_track()
...     dpr.read_track()
...     dpr.read_tracksi([0, 1, 2, 0, 0, 2])
...     dpr.close()
...     os.remove(fname) #delete file from disk
>>> dpy_example()
close()#
read_track()#

read one track each time

read_tracks()#

read the entire tractography

read_tracksi(indices)#

read tracks with specific indices

version()#
write_track(track)#

write on track each time

write_tracks(tracks)#

write many tracks together

read_bvals_bvecs#

dipy.io.gradients.read_bvals_bvecs(fbvals, fbvecs)#

Read b-values and b-vectors from disk.

Parameters#

fbvalsstr

Full path to file with b-values. None to not read bvals.

fbvecsstr

Full path of file with b-vectors. None to not read bvecs.

Returns#

bvals : array, (N,) or None bvecs : array, (N, 3) or None

Notes#

Files can be either ‘.bvals’/’.bvecs’ or ‘.txt’ or ‘.npy’ (containing arrays stored with the appropriate values).

load_nifti_data#

dipy.io.image.load_nifti_data(fname, as_ndarray=True)#

Load only the data array from a nifti file.

Parameters#

fnamestr

Full path to the file.

as_ndarray: bool, optional

convert nibabel ArrayProxy to a numpy.ndarray. If you want to save memory and delay this casting, just turn this option to False (default: True)

Returns#

data: np.ndarray or nib.ArrayProxy

See Also#

load_nifti

load_nifti#

dipy.io.image.load_nifti(fname, return_img=False, return_voxsize=False, return_coords=False, as_ndarray=True)#

Load data and other information from a nifti file.

Parameters#

fnamestr

Full path to a nifti file.

return_imgbool, optional

Whether to return the nibabel nifti img object. Default: False

return_voxsize: bool, optional

Whether to return the nifti header zooms. Default: False

return_coordsbool, optional

Whether to return the nifti header aff2axcodes. Default: False

as_ndarray: bool, optional

convert nibabel ArrayProxy to a numpy.ndarray. If you want to save memory and delay this casting, just turn this option to False (default: True)

Returns#

A tuple, with (at the most, if all keyword args are set to True): (data, img.affine, img, vox_size, nib.aff2axcodes(img.affine))

See Also#

load_nifti_data

save_nifti#

dipy.io.image.save_nifti(fname, data, affine, hdr=None, dtype=None)#

Save a data array into a nifti file.

Parameters#

fnamestr

The full path to the file to be saved.

datandarray

The array with the data to save.

affine4x4 array

The affine transform associated with the file.

hdrnifti header, optional

May contain additional information to store in the file header.

Returns#

None

save_qa_metric#

dipy.io.image.save_qa_metric(fname, xopt, fopt)#

Save Quality Assurance metrics.

Parameters#

fname: string

File name to save the metric values.

xopt: numpy array

The metric containing the optimal parameters for image registration.

fopt: int

The distance between the registered images.

load_peaks#

dipy.io.peaks.load_peaks(fname, verbose=False)#

Load a PeaksAndMetrics HDF5 file (PAM5)

Parameters#

fnamestring

Filename of PAM5 file.

verbosebool

Print summary information about the loaded file.

Returns#

pam : PeaksAndMetrics object

save_peaks#

dipy.io.peaks.save_peaks(fname, pam, affine=None, verbose=False)#

Save all important attributes of object PeaksAndMetrics in a PAM5 file (HDF5).

Parameters#

fnamestring

Filename of PAM5 file

pamPeaksAndMetrics

Object holding peak_dirs, shm_coeffs and other attributes

affinearray

The 4x4 matrix transforming the date from native to world coordinates. PeaksAndMetrics should have that attribute but if not it can be provided here. Default None.

verbosebool

Print summary information about the saved file.

peaks_to_niftis#

dipy.io.peaks.peaks_to_niftis(pam, fname_shm, fname_dirs, fname_values, fname_indices, fname_gfa=None, reshape_dirs=False)#

Save SH, directions, indices and values of peaks to Nifti.

save_pickle#

dipy.io.pickles.save_pickle(fname, dix)#

Save dix to fname as pickle.

Parameters#

fnamestr

filename to save object e.g. a dictionary

dixstr

dictionary or other object

Examples#

>>> import os
>>> from tempfile import mkstemp
>>> fd, fname = mkstemp() # make temporary file (opened, attached to fh)
>>> d={0:{'d':1}}
>>> save_pickle(fname, d)
>>> d2=load_pickle(fname)

We remove the temporary file we created for neatness

>>> os.close(fd) # the file is still open, we need to close the fh
>>> os.remove(fname)

See Also#

dipy.io.pickles.load_pickle

load_pickle#

dipy.io.pickles.load_pickle(fname)#

Load object from pickle file fname.

Parameters#

fnamestr

filename to load dict or other python object

Returns#

dixobject

dictionary or other object

Examples#

dipy.io.pickles.save_pickle

Space#

class dipy.io.stateful_tractogram.Space(value)#

Bases: Enum

Enum to simplify future change to convention

__init__()#
RASMM = 'rasmm'#
VOX = 'vox'#
VOXMM = 'voxmm'#

Origin#

class dipy.io.stateful_tractogram.Origin(value)#

Bases: Enum

Enum to simplify future change to convention

__init__()#
NIFTI = 'center'#
TRACKVIS = 'corner'#

StatefulTractogram#

class dipy.io.stateful_tractogram.StatefulTractogram(streamlines, reference, space, origin=Origin.NIFTI, data_per_point=None, data_per_streamline=None)#

Bases: object

Class for stateful representation of collections of streamlines Object designed to be identical no matter the file format (trk, tck, vtk, fib, dpy). Facilitate transformation between space and data manipulation for each streamline / point.

__init__(streamlines, reference, space, origin=Origin.NIFTI, data_per_point=None, data_per_streamline=None)#

Create a strict, state-aware, robust tractogram

Parameters#

streamlineslist or ArraySequence

Streamlines of the tractogram

referenceNifti or Trk filename, Nifti1Image or TrkFile,

Nifti1Header, trk.header (dict) or another Stateful Tractogram Reference that provides the spatial attributes. Typically a nifti-related object from the native diffusion used for streamlines generation

spaceEnum (dipy.io.stateful_tractogram.Space)

Current space in which the streamlines are (vox, voxmm or rasmm) After tracking the space is VOX, after loading with nibabel the space is RASMM

originEnum (dipy.io.stateful_tractogram.Origin), optional

Current origin in which the streamlines are (center or corner) After loading with nibabel the origin is CENTER

data_per_pointdict, optional

Dictionary in which each key has X items, each items has Y_i items X being the number of streamlines Y_i being the number of points on streamlines #i

data_per_streamlinedict, optional

Dictionary in which each key has X items X being the number of streamlines

Notes#

Very important to respect the convention, verify that streamlines match the reference and are effectively in the right space.

Any change to the number of streamlines, data_per_point or data_per_streamline requires particular verification.

In a case of manipulation not allowed by this object, use Nibabel directly and be careful.

property affine#

Getter for the reference affine

static are_compatible(sft_1, sft_2)#

Compatibility verification of two StatefulTractogram to ensure space, origin, data_per_point and data_per_streamline consistency

compute_bounding_box()#

Compute the bounding box of the streamlines in their current state

Returns#

outputndarray

8 corners of the XYZ aligned box, all zeros if no streamlines

property data_per_point#

Getter for data_per_point

property data_per_streamline#

Getter for data_per_streamline

property dimensions#

Getter for the reference dimensions

property dtype_dict#

Getter for dtype_dict

static from_sft(streamlines, sft, data_per_point=None, data_per_streamline=None)#

Create an instance of StatefulTractogram from another instance of StatefulTractogram.

Parameters#

streamlineslist or ArraySequence

Streamlines of the tractogram

sftStatefulTractogram,

The other StatefulTractogram to copy the space_attribute AND state from.

data_per_pointdict, optional

Dictionary in which each key has X items, each items has Y_i items X being the number of streamlines Y_i being the number of points on streamlines #i

data_per_streamlinedict, optional

Dictionary in which each key has X items X being the number of streamlines


get_data_per_point_keys()#

Return a list of the data_per_point attribute names

get_data_per_streamline_keys()#

Return a list of the data_per_streamline attribute names

get_streamlines_copy()#

Safe getter for streamlines (for slicing)

is_bbox_in_vox_valid()#

Verify that the bounding box is valid in voxel space. Negative coordinates or coordinates above the volume dimensions are considered invalid in voxel space.

Returns#

outputbool

Are the streamlines within the volume of the associated reference

property origin#

Getter for origin standard

remove_invalid_streamlines(epsilon=0.001)#

Remove streamlines with invalid coordinates from the object. Will also remove the data_per_point and data_per_streamline. Invalid coordinates are any X,Y,Z values above the reference dimensions or below zero

Parameters#

epsilonfloat (optional)

Epsilon value for the bounding box verification. Default is 1e-6.

Returns#

outputtuple

Tuple of two list, indices_to_remove, indices_to_keep

property space#

Getter for the current space

property space_attributes#

Getter for spatial attribute

property streamlines#

Partially safe getter for streamlines

to_center()#

Safe function to shift streamlines so the center of voxel is the origin

to_corner()#

Safe function to shift streamlines so the corner of voxel is the origin

to_origin(target_origin)#

Safe function to change streamlines to a particular origin standard False means NIFTI (center) and True means TrackVis (corner)

to_rasmm()#

Safe function to transform streamlines and update state

to_space(target_space)#

Safe function to transform streamlines to a particular space using an enum and update state

to_vox()#

Safe function to transform streamlines and update state

to_voxmm()#

Safe function to transform streamlines and update state

property voxel_order#

Getter for the reference voxel order

property voxel_sizes#

Getter for the reference voxel sizes

logger#

dipy.io.stateful_tractogram.logger()#

Instances of the Logger class represent a single logging channel. A “logging channel” indicates an area of an application. Exactly how an “area” is defined is up to the application developer. Since an application can have any number of areas, logging channels are identified by a unique string. Application areas can be nested (e.g. an area of “input processing” might include sub-areas “read CSV files”, “read XLS files” and “read Gnumeric files”). To cater for this natural nesting, channel names are organized into a namespace hierarchy where levels are separated by periods, much like the Java or Python package namespace. So in the instance given above, channel names might be “input” for the upper level, and “input.csv”, “input.xls” and “input.gnu” for the sub-levels. There is no arbitrary limit to the depth of nesting.

set_sft_logger_level#

dipy.io.stateful_tractogram.set_sft_logger_level(log_level)#

Change the logger of the StatefulTractogram to one on the following: DEBUG, INFO, WARNING, CRITICAL, ERROR

Parameters#

log_levelstr

Log level for the StatefulTractogram only

save_tractogram#

dipy.io.streamline.save_tractogram(sft, filename, bbox_valid_check=True)#

Save the stateful tractogram in any format (trk/tck/vtk/vtp/fib/dpy)

Parameters#

sftStatefulTractogram

The stateful tractogram to save

filenamestring

Filename with valid extension

bbox_valid_checkbool

Verification for negative voxel coordinates or values above the volume dimensions. Default is True, to enforce valid file.

Returns#

outputbool

True if the saving operation was successful

load_tractogram#

dipy.io.streamline.load_tractogram(filename, reference, to_space=Space.RASMM, to_origin=Origin.NIFTI, bbox_valid_check=True, trk_header_check=True)#

Load the stateful tractogram from any format (trk/tck/vtk/vtp/fib/dpy)

Parameters#

filenamestring

Filename with valid extension

referenceNifti or Trk filename, Nifti1Image or TrkFile, Nifti1Header or

trk.header (dict), or ‘same’ if the input is a trk file. Reference that provides the spatial attribute. Typically a nifti-related object from the native diffusion used for streamlines generation

to_spaceEnum (dipy.io.stateful_tractogram.Space)

Space to which the streamlines will be transformed after loading

to_originEnum (dipy.io.stateful_tractogram.Origin)
Origin to which the streamlines will be transformed after loading

NIFTI standard, default (center of the voxel) TRACKVIS standard (corner of the voxel)

bbox_valid_checkbool

Verification for negative voxel coordinates or values above the volume dimensions. Default is True, to enforce valid file.

trk_header_checkbool

Verification that the reference has the same header as the spatial attributes as the input tractogram when a Trk is loaded

Returns#

outputStatefulTractogram

The tractogram to load (must have been saved properly)

load_generator#

dipy.io.streamline.load_generator(ttype)#

Generate a loading function that performs a file extension check to restrict the user to a single file format.

Parameters#

ttypestring

Extension of the file format that requires a loader

Returns#

outputfunction

Function (load_tractogram) that handle only one file format

save_generator#

dipy.io.streamline.save_generator(ttype)#

Generate a saving function that performs a file extension check to restrict the user to a single file format.

Parameters#

ttypestring

Extension of the file format that requires a saver

Returns#

outputfunction

Function (save_tractogram) that handle only one file format

load_trk#

dipy.io.streamline.load_trk(filename, reference, to_space=Space.RASMM, to_origin=Origin.NIFTI, bbox_valid_check=True, trk_header_check=True)#

Load the stateful tractogram of the .trk format

Parameters#

filenamestring

Filename with valid extension

referenceNifti or Trk filename, Nifti1Image or TrkFile, Nifti1Header or

trk.header (dict), or ‘same’ if the input is a trk file. Reference that provides the spatial attribute. Typically a nifti-related object from the native diffusion used for streamlines generation

to_spaceEnum (dipy.io.stateful_tractogram.Space)

Space to which the streamlines will be transformed after loading

to_originEnum (dipy.io.stateful_tractogram.Origin)
Origin to which the streamlines will be transformed after loading

NIFTI standard, default (center of the voxel) TRACKVIS standard (corner of the voxel)

bbox_valid_checkbool

Verification for negative voxel coordinates or values above the volume dimensions. Default is True, to enforce valid file.

trk_header_checkbool

Verification that the reference has the same header as the spatial attributes as the input tractogram when a Trk is loaded

Returns#

outputStatefulTractogram

The tractogram to load (must have been saved properly)

load_tck#

dipy.io.streamline.load_tck(filename, reference, to_space=Space.RASMM, to_origin=Origin.NIFTI, bbox_valid_check=True, trk_header_check=True)#

Load the stateful tractogram of the .tck format

Parameters#

filenamestring

Filename with valid extension

referenceNifti or Trk filename, Nifti1Image or TrkFile, Nifti1Header or

trk.header (dict), or ‘same’ if the input is a trk file. Reference that provides the spatial attribute. Typically a nifti-related object from the native diffusion used for streamlines generation

to_spaceEnum (dipy.io.stateful_tractogram.Space)

Space to which the streamlines will be transformed after loading

to_originEnum (dipy.io.stateful_tractogram.Origin)
Origin to which the streamlines will be transformed after loading

NIFTI standard, default (center of the voxel) TRACKVIS standard (corner of the voxel)

bbox_valid_checkbool

Verification for negative voxel coordinates or values above the volume dimensions. Default is True, to enforce valid file.

trk_header_checkbool

Verification that the reference has the same header as the spatial attributes as the input tractogram when a Trk is loaded

Returns#

outputStatefulTractogram

The tractogram to load (must have been saved properly)

load_trx#

dipy.io.streamline.load_trx(filename, reference, to_space=Space.RASMM, to_origin=Origin.NIFTI, bbox_valid_check=True, trk_header_check=True)#

Load the stateful tractogram of the .trx format

Parameters#

filenamestring

Filename with valid extension

referenceNifti or Trk filename, Nifti1Image or TrkFile, Nifti1Header or

trk.header (dict), or ‘same’ if the input is a trk file. Reference that provides the spatial attribute. Typically a nifti-related object from the native diffusion used for streamlines generation

to_spaceEnum (dipy.io.stateful_tractogram.Space)

Space to which the streamlines will be transformed after loading

to_originEnum (dipy.io.stateful_tractogram.Origin)
Origin to which the streamlines will be transformed after loading

NIFTI standard, default (center of the voxel) TRACKVIS standard (corner of the voxel)

bbox_valid_checkbool

Verification for negative voxel coordinates or values above the volume dimensions. Default is True, to enforce valid file.

trk_header_checkbool

Verification that the reference has the same header as the spatial attributes as the input tractogram when a Trk is loaded

Returns#

outputStatefulTractogram

The tractogram to load (must have been saved properly)

load_vtk#

dipy.io.streamline.load_vtk(filename, reference, to_space=Space.RASMM, to_origin=Origin.NIFTI, bbox_valid_check=True, trk_header_check=True)#

Load the stateful tractogram of the .vtk format

Parameters#

filenamestring

Filename with valid extension

referenceNifti or Trk filename, Nifti1Image or TrkFile, Nifti1Header or

trk.header (dict), or ‘same’ if the input is a trk file. Reference that provides the spatial attribute. Typically a nifti-related object from the native diffusion used for streamlines generation

to_spaceEnum (dipy.io.stateful_tractogram.Space)

Space to which the streamlines will be transformed after loading

to_originEnum (dipy.io.stateful_tractogram.Origin)
Origin to which the streamlines will be transformed after loading

NIFTI standard, default (center of the voxel) TRACKVIS standard (corner of the voxel)

bbox_valid_checkbool

Verification for negative voxel coordinates or values above the volume dimensions. Default is True, to enforce valid file.

trk_header_checkbool

Verification that the reference has the same header as the spatial attributes as the input tractogram when a Trk is loaded

Returns#

outputStatefulTractogram

The tractogram to load (must have been saved properly)

load_vtp#

dipy.io.streamline.load_vtp(filename, reference, to_space=Space.RASMM, to_origin=Origin.NIFTI, bbox_valid_check=True, trk_header_check=True)#

Load the stateful tractogram of the .vtp format

Parameters#

filenamestring

Filename with valid extension

referenceNifti or Trk filename, Nifti1Image or TrkFile, Nifti1Header or

trk.header (dict), or ‘same’ if the input is a trk file. Reference that provides the spatial attribute. Typically a nifti-related object from the native diffusion used for streamlines generation

to_spaceEnum (dipy.io.stateful_tractogram.Space)

Space to which the streamlines will be transformed after loading

to_originEnum (dipy.io.stateful_tractogram.Origin)
Origin to which the streamlines will be transformed after loading

NIFTI standard, default (center of the voxel) TRACKVIS standard (corner of the voxel)

bbox_valid_checkbool

Verification for negative voxel coordinates or values above the volume dimensions. Default is True, to enforce valid file.

trk_header_checkbool

Verification that the reference has the same header as the spatial attributes as the input tractogram when a Trk is loaded

Returns#

outputStatefulTractogram

The tractogram to load (must have been saved properly)

load_fib#

dipy.io.streamline.load_fib(filename, reference, to_space=Space.RASMM, to_origin=Origin.NIFTI, bbox_valid_check=True, trk_header_check=True)#

Load the stateful tractogram of the .fib format

Parameters#

filenamestring

Filename with valid extension

referenceNifti or Trk filename, Nifti1Image or TrkFile, Nifti1Header or

trk.header (dict), or ‘same’ if the input is a trk file. Reference that provides the spatial attribute. Typically a nifti-related object from the native diffusion used for streamlines generation

to_spaceEnum (dipy.io.stateful_tractogram.Space)

Space to which the streamlines will be transformed after loading

to_originEnum (dipy.io.stateful_tractogram.Origin)
Origin to which the streamlines will be transformed after loading

NIFTI standard, default (center of the voxel) TRACKVIS standard (corner of the voxel)

bbox_valid_checkbool

Verification for negative voxel coordinates or values above the volume dimensions. Default is True, to enforce valid file.

trk_header_checkbool

Verification that the reference has the same header as the spatial attributes as the input tractogram when a Trk is loaded

Returns#

outputStatefulTractogram

The tractogram to load (must have been saved properly)

load_dpy#

dipy.io.streamline.load_dpy(filename, reference, to_space=Space.RASMM, to_origin=Origin.NIFTI, bbox_valid_check=True, trk_header_check=True)#

Load the stateful tractogram of the .dpy format

Parameters#

filenamestring

Filename with valid extension

referenceNifti or Trk filename, Nifti1Image or TrkFile, Nifti1Header or

trk.header (dict), or ‘same’ if the input is a trk file. Reference that provides the spatial attribute. Typically a nifti-related object from the native diffusion used for streamlines generation

to_spaceEnum (dipy.io.stateful_tractogram.Space)

Space to which the streamlines will be transformed after loading

to_originEnum (dipy.io.stateful_tractogram.Origin)
Origin to which the streamlines will be transformed after loading

NIFTI standard, default (center of the voxel) TRACKVIS standard (corner of the voxel)

bbox_valid_checkbool

Verification for negative voxel coordinates or values above the volume dimensions. Default is True, to enforce valid file.

trk_header_checkbool

Verification that the reference has the same header as the spatial attributes as the input tractogram when a Trk is loaded

Returns#

outputStatefulTractogram

The tractogram to load (must have been saved properly)

save_trk#

dipy.io.streamline.save_trk(sft, filename, bbox_valid_check=True)#

Save the stateful tractogram of the .trk format

Parameters#

sftStatefulTractogram

The stateful tractogram to save

filenamestring

Filename with valid extension

bbox_valid_checkbool

Verification for negative voxel coordinates or values above the volume dimensions. Default is True, to enforce valid file.

Returns#

outputbool

True if the saving operation was successful

save_tck#

dipy.io.streamline.save_tck(sft, filename, bbox_valid_check=True)#

Save the stateful tractogram of the .tck format

Parameters#

sftStatefulTractogram

The stateful tractogram to save

filenamestring

Filename with valid extension

bbox_valid_checkbool

Verification for negative voxel coordinates or values above the volume dimensions. Default is True, to enforce valid file.

Returns#

outputbool

True if the saving operation was successful

save_trx#

dipy.io.streamline.save_trx(sft, filename, bbox_valid_check=True)#

Save the stateful tractogram of the .trx format

Parameters#

sftStatefulTractogram

The stateful tractogram to save

filenamestring

Filename with valid extension

bbox_valid_checkbool

Verification for negative voxel coordinates or values above the volume dimensions. Default is True, to enforce valid file.

Returns#

outputbool

True if the saving operation was successful

save_vtk#

dipy.io.streamline.save_vtk(sft, filename, bbox_valid_check=True)#

Save the stateful tractogram of the .vtk format

Parameters#

sftStatefulTractogram

The stateful tractogram to save

filenamestring

Filename with valid extension

bbox_valid_checkbool

Verification for negative voxel coordinates or values above the volume dimensions. Default is True, to enforce valid file.

Returns#

outputbool

True if the saving operation was successful

save_vtp#

dipy.io.streamline.save_vtp(sft, filename, bbox_valid_check=True)#

Save the stateful tractogram of the .vtp format

Parameters#

sftStatefulTractogram

The stateful tractogram to save

filenamestring

Filename with valid extension

bbox_valid_checkbool

Verification for negative voxel coordinates or values above the volume dimensions. Default is True, to enforce valid file.

Returns#

outputbool

True if the saving operation was successful

save_fib#

dipy.io.streamline.save_fib(sft, filename, bbox_valid_check=True)#

Save the stateful tractogram of the .fib format

Parameters#

sftStatefulTractogram

The stateful tractogram to save

filenamestring

Filename with valid extension

bbox_valid_checkbool

Verification for negative voxel coordinates or values above the volume dimensions. Default is True, to enforce valid file.

Returns#

outputbool

True if the saving operation was successful

save_dpy#

dipy.io.streamline.save_dpy(sft, filename, bbox_valid_check=True)#

Save the stateful tractogram of the .dpy format

Parameters#

sftStatefulTractogram

The stateful tractogram to save

filenamestring

Filename with valid extension

bbox_valid_checkbool

Verification for negative voxel coordinates or values above the volume dimensions. Default is True, to enforce valid file.

Returns#

outputbool

True if the saving operation was successful

load_pial#

dipy.io.surface.load_pial(fname, return_meta=False)#

Load pial file.

Parameters#

fnamestr

Absolute path of the file.

return_metabool, optional

Whether to read the metadata of the file or not, by default False.

Returns#

tuple

(vertices, faces) if return_meta=False. Otherwise, (vertices, faces, metadata).

load_gifti#

dipy.io.surface.load_gifti(fname)#

Load gifti file.

Parameters#

fnamestr

Absolute path of the file.

Returns#

tuple

(vertices, faces)

nifti1_symmat#

dipy.io.utils.nifti1_symmat(image_data, *args, **kwargs)#

Returns a Nifti1Image with a symmetric matrix intent

Parameters#

image_dataarray-like

should have lower triangular elements of a symmetric matrix along the last dimension

all other arguments and keywords are passed to Nifti1Image

Returns#

imageNifti1Image

5d, extra dimensions added before the last. Has symmetric matrix intent code

make5d#

dipy.io.utils.make5d(data)#

reshapes the input to have 5 dimensions, adds extra dimensions just before the last dimension

decfa#

dipy.io.utils.decfa(img_orig, scale=False)#

Create a nifti-compliant directional-encoded color FA image.

Parameters#

img_origNifti1Image class instance.

Contains encoding of the DEC FA image with a 4D volume of data, where the elements on the last dimension represent R, G and B components.

scale: bool.

Whether to scale the incoming data from the 0-1 to the 0-255 range expected in the output.

Returns#

imgNifti1Image class instance with dtype set to store tuples of

uint8 in (R, G, B) order.

Notes#

For a description of this format, see:

https://nifti.nimh.nih.gov/nifti-1/documentation/nifti1fields/nifti1fields_pages/datatype.html

decfa_to_float#

dipy.io.utils.decfa_to_float(img_orig)#

Convert a nifti-compliant directional-encoded color FA image into a nifti image with RGB encoded in floating point resolution.

Parameters#

img_origNifti1Image class instance.

Contains encoding of the DEC FA image with a 3D volume of data, where each element is a (R, G, B) tuple in uint8.

Returns#

img : Nifti1Image class instance with float dtype.

Notes#

For a description of this format, see:

https://nifti.nimh.nih.gov/nifti-1/documentation/nifti1fields/nifti1fields_pages/datatype.html

is_reference_info_valid#

dipy.io.utils.is_reference_info_valid(affine, dimensions, voxel_sizes, voxel_order)#

Validate basic data type and value of spatial attribute.

Does not ensure that voxel_sizes and voxel_order are self-coherent with the affine. Only verify the following:

  • affine is of the right type (float) and dimension (4,4)

  • affine contain values in the rotation part

  • dimensions is of right type (int) and length (3)

  • voxel_sizes is of right type (float) and length (3)

  • voxel_order is of right type (str) and length (3)

The listed parameters are what is expected, provide something else and this function should fail (cover common mistakes).

Parameters#

affine: ndarray (4,4)

Transformation of VOX to RASMM

dimensions: ndarray (3,), int16

Volume shape for each axis

voxel_sizes: ndarray (3,), float32

Size of voxel for each axis

voxel_order: string

Typically ‘RAS’ or ‘LPS’

Returns#

outputbool

Does the input represent a valid ‘state’ of spatial attribute

split_name_with_gz#

dipy.io.utils.split_name_with_gz(filename)#

Returns the clean basename and extension of a file. Means that this correctly manages the “.nii.gz” extensions.

Parameters#

filename: str

The filename to clean

Returns#

base, ext : tuple(str, str) Clean basename and the full extension

get_reference_info#

dipy.io.utils.get_reference_info(reference)#

Will compare the spatial attribute of 2 references.

Parameters#

referenceNifti or Trk filename, Nifti1Image or TrkFile, Nifti1Header or

trk.header (dict), TrxFile or trx.header (dict) Reference that provides the spatial attribute.

Returns#

outputtuple
  • affine ndarray (4,4), np.float32, transformation of VOX to RASMM

  • dimensions ndarray (3,), int16, volume shape for each axis

  • voxel_sizes ndarray (3,), float32, size of voxel for each axis

  • voxel_order, string, Typically ‘RAS’ or ‘LPS’

is_header_compatible#

dipy.io.utils.is_header_compatible(reference_1, reference_2)#

Will compare the spatial attribute of 2 references

Parameters#

reference_1Nifti or Trk filename, Nifti1Image or TrkFile,

Nifti1Header or trk.header (dict) Reference that provides the spatial attribute.

reference_2Nifti or Trk filename, Nifti1Image or TrkFile,

Nifti1Header or trk.header (dict) Reference that provides the spatial attribute.

Returns#

outputbool

Does all the spatial attribute match

create_tractogram_header#

dipy.io.utils.create_tractogram_header(tractogram_type, affine, dimensions, voxel_sizes, voxel_order)#

Write a standard trk/tck header from spatial attribute

create_nifti_header#

dipy.io.utils.create_nifti_header(affine, dimensions, voxel_sizes)#

Write a standard nifti header from spatial attribute

save_buan_profiles_hdf5#

dipy.io.utils.save_buan_profiles_hdf5(fname, dt)#

Saves the given input dataframe to .h5 file

Parameters#

fnamestring

file name for saving the hdf5 file

dtPandas DataFrame

DataFrame to be saved as .h5 file

read_img_arr_or_path#

dipy.io.utils.read_img_arr_or_path(data, affine=None)#

Helper function that handles inputs that can be paths, nifti img or arrays

Parameters#

dataarray or nib.Nifti1Image or str.

Either as a 3D/4D array or as a nifti image object, or as a string containing the full path to a nifti file.

affine4x4 array, optional.

Must be provided for data provided as an array. If provided together with Nifti1Image or str data, this input will over-ride the affine that is stored in the data input. Default: use the affine stored in data.

Returns#

data, affine : ndarray and 4x4 array

load_polydata#

dipy.io.vtk.load_polydata(file_name)#

Load a vtk polydata to a supported format file.

Supported file formats are OBJ, VTK, VTP, FIB, PLY, STL and XML

Parameters#

file_name : string

Returns#

output : vtkPolyData

save_polydata#

dipy.io.vtk.save_polydata(polydata, file_name, binary=False, color_array_name=None)#

Save a vtk polydata to a supported format file.

Save formats can be VTK, VTP, FIB, PLY, STL and XML.

Parameters#

polydata : vtkPolyData file_name : string

save_vtk_streamlines#

dipy.io.vtk.save_vtk_streamlines(streamlines, filename, to_lps=True, binary=False)#

Save streamlines as vtk polydata to a supported format file.

File formats can be OBJ, VTK, VTP, FIB, PLY, STL and XML

Parameters#

streamlineslist

list of 2D arrays or ArraySequence

filenamestring

output filename (.obj, .vtk, .fib, .ply, .stl and .xml)

to_lpsbool

Default to True, will follow the vtk file convention for streamlines Will be supported by MITKDiffusion and MI-Brain

binarybool

save the file as binary

load_vtk_streamlines#

dipy.io.vtk.load_vtk_streamlines(filename, to_lps=True)#

Load streamlines from vtk polydata.

Load formats can be VTK, FIB

Parameters#

filenamestring

input filename (.vtk or .fib)

to_lpsbool

Default to True, will follow the vtk file convention for streamlines Will be supported by MITKDiffusion and MI-Brain

Returns#

outputlist

list of 2D arrays