dipy_align_affine#
Usage#
dipy_align_affine [OPTIONS] static_image_files moving_image_files
Input Parameters#
static_image_filesPath to the static image file.
moving_image_filesPath to the moving image file.
General Options#
--transform'com': center of mass;'trans': translation;'rigid': rigid body;'rigid_isoscaling': rigid body + isotropic scaling,'rigid_scaling': rigid body + scaling;'affine': full affine including translation, rotation, shearing and scaling.--nbinsNumber of bins to discretize the joint and marginal PDF.
--sampling_propNumber ([0-100]) of voxels for calculating the PDF. None implies all voxels.
--metricSimilarity metric for gathering mutual information.
--level_itersThe number of iterations at each scale of the scale space. level_iters[0] corresponds to the coarsest scale, level_iters[-1] the finest, where n is the length of the sequence.
--sigmas- Custom smoothing parameter to build the scale space (one parameter
for each scale).
--factors- Custom scale factors to build the scale space (one factor for each
scale).
--progressiveEnable/Disable the progressive registration.
--save_metricIf true, quality assessment metric are saved in ‘quality_metric.txt’.
--static_vol_idx1D array representing indices of
axis=-1of a 4D static input volume. From the command line use something like 3 4 5 6. From script use something like [3, 4, 5, 6]. This input is required for 4D volumes.--moving_vol_idx1D array representing indices of
axis=-1of a 4D moving input volume. From the command line use something like 3 4 5 6. From script use something like [3, 4, 5, 6]. This input is required for 4D volumes.
Output Options#
--out_dir- Directory to save the transformed image and the affine matrix
(default current directory).
--out_movedName for the saved transformed image.
--out_affineName for the saved affine matrix.
--out_qualityName of the file containing the saved quality metric.
References#
Garyfallidis, E., M. Brett, B. Amirbekian, A. Rokem, S. Van Der Walt, M. Descoteaux, and I. Nimmo-Smith. Dipy, a library for the analysis of diffusion MRI data. Frontiers in Neuroinformatics, 1-18, 2014.