dipy_gibbs_ringing#
Synopsis#
Workflow for applying Gibbs Ringing method.
Usage#
dipy_gibbs_ringing [OPTIONS] input_files
Input Parameters#
input_files
Path to the input volumes. This path may contain wildcards to process multiple inputs at once.
General Options#
--slice_axis
Data axis corresponding to the number of acquired slices. Could be (0, 1, or 2): for example, a value of 2 would mean the third axis.
--n_points
Number of neighbour points to access local TV (see note).
--num_processes
Split the calculation to a pool of children processes. Only applies to 3D or 4D data arrays. Default is 1. If < 0 the maximal number of cores minus
num_processes + 1
is used (enter -1 to use as many cores as possible). 0 raises an error.
Output Options#
--out_dir
Output directory. (default current directory)
--out_unring
Name of the resulting denoised volume.
References#
Garyfallidis, E., M. Brett, B. Amirbekian, A. Rokem, S. Van Der Walt, M. Descoteaux, and I. Nimmo-Smith. Dipy, a library for the analysis of diffusion MRI data. Frontiers in Neuroinformatics, 1-18, 2014.