dipy_denoise_patch2self#
Synopsis#
Workflow for Patch2Self denoising method.
See [1] for further details about the method. See [2] for further details about the new method.  It applies patch2self denoising [1] on each file found by ‘globing’ input_file and bval_file. It saves the results in a directory specified by out_dir.
Usage#
dipy_denoise_patch2self [OPTIONS] input_files bval_files model
Input Parameters#
- input_files- Path to the input volumes. This path may contain wildcards to process multiple inputs at once. 
- bval_files- bval file associated with the diffusion data. 
- model- This will determine the algorithm used to solve the set of linear equations underlying this model. If it is a string it needs to be one of the following: {‘ols’, ‘ridge’, ‘lasso’}. Otherwise, it can be an object that inherits from dipy.optimize.SKLearnLinearSolver or an object with a similar interface from Scikit-Learn: sklearn.linear_model.LinearRegression, sklearn.linear_model.Lasso or sklearn.linear_model.Ridge and other objects that inherit from sklearn.base.RegressorMixin. Default: ‘ols’. 
General Options#
- --b0_threshold- Threshold for considering volumes as b0. 
- --alpha- Regularization parameter only for ridge regression model. 
- --verbose- Show progress of Patch2Self and time taken. 
- --patch_radius- The radius of the local patch to be taken around each voxel 
- --b0_denoising- Skips denoising b0 volumes if set to False. 
- --clip_negative_vals- Sets negative values after denoising to 0 using np.clip. 
- --shift_intensity- Shifts the distribution of intensities per volume to give non-negative values 
- --ver- Version of the Patch2Self algorithm to use between 1 or 3. 
Output Options#
- --out_dir- Output directory (default current directory) 
- --out_denoised- Name of the resulting denoised volume (default: dwi_patch2self.nii.gz) 
References#
Garyfallidis, E., M. Brett, B. Amirbekian, A. Rokem, S. Van Der Walt, M. Descoteaux, and I. Nimmo-Smith. Dipy, a library for the analysis of diffusion MRI data. Frontiers in Neuroinformatics, 1-18, 2014.