dipy_denoise_mppca#
Synopsis#
Workflow wrapping Marcenko-Pastur PCA denoising method.
See [1] for further details about the method.
Usage#
dipy_denoise_mppca [OPTIONS] input_files
Input Parameters#
- input_files- Path to the input volumes. This path may contain wildcards to process multiple inputs at once. 
General Options#
- --patch_radius- The radius of the local patch to be taken around each voxel (in voxels) For example, for a patch radius with value 2, and assuming the input image is a 3D image, the denoising will take place in blocks of 5x5x5 voxels. 
- --pca_method- Use either eigenvalue decomposition (‘eig’) or singular value decomposition (‘svd’) for principal component analysis. The default method is ‘eig’ which is faster. However, occasionally ‘svd’ might be more accurate. 
- --return_sigma- If true, a noise standard deviation estimate based on the Marcenko-Pastur distribution is returned [2]. 
Output Options#
- --out_dir- Output directory. (default current directory) 
- --out_denoised- Name of the resulting denoised volume. 
- --out_sigma- Name of the resulting sigma volume. 
References#
Garyfallidis, E., M. Brett, B. Amirbekian, A. Rokem, S. Van Der Walt, M. Descoteaux, and I. Nimmo-Smith. Dipy, a library for the analysis of diffusion MRI data. Frontiers in Neuroinformatics, 1-18, 2014.