dipy_median_otsu#
Synopsis#
Workflow wrapping the median_otsu segmentation method.
Applies median_otsu segmentation on each file found by ‘globing’ input_files and saves the results in a directory specified by out_dir.
Usage#
dipy_median_otsu [OPTIONS] input_files
Input Parameters#
- input_files- Path to the input volumes. This path may contain wildcards to process multiple inputs at once. 
General Options#
- --save_masked- Save mask. 
- --median_radius- Radius (in voxels) of the applied median filter. 
- --numpass- Number of pass of the median filter. 
- --autocrop- If True, the masked input_volumes will also be cropped using the bounding box defined by the masked data. For example, if diffusion images are of 1x1x1 (mm^3) or higher resolution auto-cropping could reduce their size in memory and speed up some of the analysis. 
- --vol_idx- 1D array representing indices of - axis=-1of a 4D input_volume. From the command line use something like ‘1,2,3-5,7’. This input is required for 4D volumes.
- --dilate- number of iterations for binary dilation. 
- --finalize_mask- Whether to remove potential holes or islands. Useful for solving minor errors. 
Output Options#
- --out_dir- Output directory. (default current directory) 
- --out_mask- Name of the mask volume to be saved. 
- --out_masked- Name of the masked volume to be saved. 
References#
Garyfallidis, E., M. Brett, B. Amirbekian, A. Rokem, S. Van Der Walt, M. Descoteaux, and I. Nimmo-Smith. Dipy, a library for the analysis of diffusion MRI data. Frontiers in Neuroinformatics, 1-18, 2014.