dipy_recobundles#
Synopsis#
Recognize bundles
Usage#
dipy_recobundles [OPTIONS] streamline_files model_bundle_files
Input Parameters#
streamline_filesThe path of streamline files where you want to recognize bundles.
model_bundle_filesThe path of model bundle files.
General Options#
--greater_thanKeep streamlines that have length greater than this value in mm.
--less_thanKeep streamlines have length less than this value in mm.
--no_slrDon’t enable local Streamline-based Linear Registration.
--clust_thrMDF distance threshold for all streamlines.
--reduction_thrReduce search space by (mm).
--reduction_distanceReduction distance type can be mdf or mam.
--model_clust_thrMDF distance threshold for the model bundles.
--pruning_thrPruning after matching.
--pruning_distancePruning distance type can be mdf or mam.
--slr_metricOptions are None, symmetric, asymmetric or diagonal.
--slr_transformTransformation allowed. translation, rigid, similarity or scaling.
--slr_matrixOptions are ‘nano’, ‘tiny’, ‘small’, ‘medium’, ‘large’, ‘huge’.
--refineEnable refine recognized bundle.
--r_reduction_thrRefine reduce search space by (mm).
--r_pruning_thrRefine pruning after matching.
--no_r_slrDon’t enable Refine local Streamline-based Linear Registration.
Output Options#
--out_dirOutput directory. (default current directory)
--out_recognized_transfRecognized bundle in the space of the model bundle.
--out_recognized_labelsIndices of recognized bundle in the original tractogram.
References#
Garyfallidis, E., M. Brett, B. Amirbekian, A. Rokem, S. Van Der Walt, M. Descoteaux, and I. Nimmo-Smith. Dipy, a library for the analysis of diffusion MRI data. Frontiers in Neuroinformatics, 1-18, 2014.