dipy_recobundles#
Synopsis#
Recognize bundles
Usage#
dipy_recobundles [OPTIONS] streamline_files model_bundle_files
Input Parameters#
- streamline_files- The path of streamline files where you want to recognize bundles. 
- model_bundle_files- The path of model bundle files. 
General Options#
- --greater_than- Keep streamlines that have length greater than this value in mm. 
- --less_than- Keep streamlines have length less than this value in mm. 
- --no_slr- Don’t enable local Streamline-based Linear Registration. 
- --clust_thr- MDF distance threshold for all streamlines. 
- --reduction_thr- Reduce search space by (mm). 
- --reduction_distance- Reduction distance type can be mdf or mam. 
- --model_clust_thr- MDF distance threshold for the model bundles. 
- --pruning_thr- Pruning after matching. 
- --pruning_distance- Pruning distance type can be mdf or mam. 
- --slr_metric- Options are None, symmetric, asymmetric or diagonal. 
- --slr_transform- Transformation allowed. translation, rigid, similarity or scaling. 
- --slr_matrix- Options are ‘nano’, ‘tiny’, ‘small’, ‘medium’, ‘large’, ‘huge’. 
- --refine- Enable refine recognized bundle. 
- --r_reduction_thr- Refine reduce search space by (mm). 
- --r_pruning_thr- Refine pruning after matching. 
- --no_r_slr- Don’t enable Refine local Streamline-based Linear Registration. 
Output Options#
- --out_dir- Output directory. (default current directory) 
- --out_recognized_transf- Recognized bundle in the space of the model bundle. 
- --out_recognized_labels- Indices of recognized bundle in the original tractogram. 
References#
Garyfallidis, E., M. Brett, B. Amirbekian, A. Rokem, S. Van Der Walt, M. Descoteaux, and I. Nimmo-Smith. Dipy, a library for the analysis of diffusion MRI data. Frontiers in Neuroinformatics, 1-18, 2014.