Note
Go to the end to download the full example code
Parallel reconstruction using CSD#
This example shows how to use parallelism (multiprocessing) using
peaks_from_model
in order to speedup the signal reconstruction
process. For this example will we use the same initial steps
as we used in Reconstruction with Constrained Spherical Deconvolution.
Import modules, fetch and read data, apply the mask and calculate the response function.
import multiprocessing
import time
from dipy.core.gradients import gradient_table
from dipy.data import get_fnames, default_sphere
from dipy.direction import peaks_from_model
from dipy.io.gradients import read_bvals_bvecs
from dipy.io.image import load_nifti
from dipy.reconst.csdeconv import ConstrainedSphericalDeconvModel
from dipy.reconst.csdeconv import auto_response_ssst
from dipy.segment.mask import median_otsu
hardi_fname, hardi_bval_fname, hardi_bvec_fname = get_fnames('stanford_hardi')
data, affine = load_nifti(hardi_fname)
bvals, bvecs = read_bvals_bvecs(hardi_bval_fname, hardi_bvec_fname)
gtab = gradient_table(bvals, bvecs)
maskdata, mask = median_otsu(data, vol_idx=range(10, 50), median_radius=3,
numpass=1, autocrop=False, dilate=2)
response, ratio = auto_response_ssst(gtab, maskdata, roi_radii=10, fa_thr=0.7)
data = maskdata[:, :, 33:37]
mask = mask[:, :, 33:37]
Now we are ready to import the CSD model and fit the datasets.
csd_model = ConstrainedSphericalDeconvModel(gtab, response)
Compute the CSD-based ODFs using peaks_from_model
. This function has a
parameter called parallel
which allows for the voxels to be processed in
parallel. If num_processes
is None it will figure out automatically the
number of CPUs available in your system. Alternatively, you can set
num_processes
manually. Here, we show an example where we compare the
duration of execution with or without parallelism.
start_time = time.time()
csd_peaks_parallel = peaks_from_model(model=csd_model,
data=data,
sphere=default_sphere,
relative_peak_threshold=.5,
min_separation_angle=25,
mask=mask,
return_sh=True,
return_odf=False,
normalize_peaks=True,
npeaks=5,
parallel=True,
num_processes=2)
time_parallel = time.time() - start_time
print(f"peaks_from_model using 2 processes ran in : {time_parallel} seconds")
start_time = time.time()
csd_peaks = peaks_from_model(model=csd_model,
data=data,
sphere=default_sphere,
relative_peak_threshold=.5,
min_separation_angle=25,
mask=mask,
return_sh=True,
return_odf=False,
normalize_peaks=True,
npeaks=5,
parallel=False,
num_processes=None)
time_single = time.time() - start_time
print("peaks_from_model ran in :" + str(time_single) + " seconds")
print("Speedup factor : " + str(time_single / time_parallel))
peaks_from_model using 2 processes ran in : 11.48861312866211 seconds
peaks_from_model ran in :10.761403560638428 seconds
Speedup factor : 0.9367017097817125
In Windows if you get a runtime error about frozen executable please start
your script by adding your code above in a main
function and use:
if __name__ == '__main__':
import multiprocessing
multiprocessing.freeze_support()
main()
Total running time of the script: (0 minutes 26.130 seconds)