Denoise images using the Marcenko-Pastur PCA algorithm#

The PCA-based denoising algorithm exploits the redundancy across the diffusion-weighted images [1], [2]. This algorithm has been shown to provide an optimal compromise between noise suppression and loss of anatomical information for different techniques such as DTI [1], spherical deconvolution [2] and DKI [3].

The basic idea behind the PCA-based denoising algorithms is to remove the components of the data that are classified as noise. The Principal Components classification can be performed based on prior noise variance estimates [1] (see denoise_localpca) or automatically based on the Marchenko-Pastur distribution [2]. In addition to noise suppression, the PCA algorithm can be used to get the standard deviation of the noise [2].

In the following example, we show how to denoise diffusion MRI images and estimate the noise standard deviation using the PCA algorithm based on the Marcenko-Pastur distribution [2]

Let’s load the necessary modules

# load general modules
from time import time

import matplotlib.pyplot as plt
import numpy as np

# load other dipy's functions that will be used for auxiliary analysis
from dipy.core.gradients import gradient_table

# load functions to fetch data for this example
from dipy.data import get_fnames

# load main pca function using Marcenko-Pastur distribution
from dipy.denoise.localpca import mppca
from dipy.io.gradients import read_bvals_bvecs
from dipy.io.image import load_nifti, save_nifti
import dipy.reconst.dki as dki
from dipy.segment.mask import median_otsu

For this example, we use fetch to download a multi-shell dataset which was kindly provided by Hansen and Jespersen (more details about the data are provided in their paper [4]). The total size of the downloaded data is 192 MBytes, however you only need to fetch it once.

dwi_fname, dwi_bval_fname, dwi_bvec_fname, _ = get_fnames(name="cfin_multib")
data, affine = load_nifti(dwi_fname)
bvals, bvecs = read_bvals_bvecs(dwi_bval_fname, dwi_bvec_fname)
gtab = gradient_table(bvals, bvecs=bvecs)

For the sake of simplicity, we only select two non-zero b-values for this example.

bvals = gtab.bvals

bvecs = gtab.bvecs

sel_b = np.logical_or(np.logical_or(bvals == 0, bvals == 1000), bvals == 2000)

data = data[..., sel_b]

gtab = gradient_table(bvals[sel_b], bvecs=bvecs[sel_b])

print(data.shape)
(96, 96, 19, 67)

As one can see from its shape, the selected data contains a total of 67 volumes of images corresponding to all the diffusion gradient directions of the selected b-values.

The PCA denoising using the Marchenko-Pastur distribution can be performed by calling the function mppca:

t = time()

denoised_arr = mppca(data, patch_radius=2)

print("Time taken for local MP-PCA ", -t + time())
Time taken for local MP-PCA  77.80112600326538

Internally, the mppca algorithm denoises the diffusion-weighted data using a 3D sliding window which is defined by the variable patch_radius. In total, this window should comprise a larger number of voxels than the number of diffusion-weighted volumes. Since our data has a total of 67 volumes, the patch_radius is set to 2 which corresponds to a 5x5x5 sliding window comprising a total of 125 voxels.

# To assess the performance of the Marchenko-Pastur PCA denoising algorithm,
# an axial slice of the original data, denoised data, and residuals are
# plotted below:

sli = data.shape[2] // 2
gra = data.shape[3] - 1
orig = data[:, :, sli, gra]
den = denoised_arr[:, :, sli, gra]
rms_diff = np.sqrt((orig - den) ** 2)

fig1, ax = plt.subplots(1, 3, figsize=(12, 6), subplot_kw={"xticks": [], "yticks": []})

fig1.subplots_adjust(hspace=0.3, wspace=0.05)

ax.flat[0].imshow(orig.T, cmap="gray", interpolation="none", origin="lower")
ax.flat[0].set_title("Original")
ax.flat[1].imshow(den.T, cmap="gray", interpolation="none", origin="lower")
ax.flat[1].set_title("Denoised Output")
ax.flat[2].imshow(rms_diff.T, cmap="gray", interpolation="none", origin="lower")
ax.flat[2].set_title("Residuals")

fig1.savefig("denoised_mppca.png")
denoise mppca

The noise suppression can be visually appreciated by comparing the original data slice (left panel) to its denoised version (middle panel). The difference between original and denoised data showing only random noise indicates that the data’s structural information is preserved by the PCA denoising algorithm (right panel).

Below we show how the denoised data can be saved.

save_nifti("denoised_mppca.nii.gz", denoised_arr, affine)

Additionally, we show how the PCA denoising algorithm affects different diffusion measurements. For this, we run the diffusion kurtosis model below on both original and denoised versions of the data:

dkimodel = dki.DiffusionKurtosisModel(gtab)

maskdata, mask = median_otsu(
    data, vol_idx=[0, 1], median_radius=4, numpass=2, autocrop=False, dilate=1
)

dki_orig = dkimodel.fit(data, mask=mask)
dki_den = dkimodel.fit(denoised_arr, mask=mask)
/Users/skoudoro/devel/dipy/dipy/reconst/dki.py:2628: RuntimeWarning: overflow encountered in exp
  S0 = np.exp(-result[[-1]])

We use the following code to plot the MD, FA and MK estimates from the two data fits:

FA_orig = dki_orig.fa
FA_den = dki_den.fa
MD_orig = dki_orig.md
MD_den = dki_den.md
MK_orig = dki_orig.mk(min_kurtosis=0, max_kurtosis=3)
MK_den = dki_den.mk(min_kurtosis=0, max_kurtosis=3)


fig2, ax = plt.subplots(2, 3, figsize=(10, 6), subplot_kw={"xticks": [], "yticks": []})

fig2.subplots_adjust(hspace=0.3, wspace=0.03)

ax.flat[0].imshow(
    MD_orig[:, :, sli].T, cmap="gray", vmin=0, vmax=2.0e-3, origin="lower"
)
ax.flat[0].set_title("MD (DKI)")
ax.flat[1].imshow(FA_orig[:, :, sli].T, cmap="gray", vmin=0, vmax=0.7, origin="lower")
ax.flat[1].set_title("FA (DKI)")
ax.flat[2].imshow(MK_orig[:, :, sli].T, cmap="gray", vmin=0, vmax=1.5, origin="lower")
ax.flat[2].set_title("AD (DKI)")
ax.flat[3].imshow(MD_den[:, :, sli].T, cmap="gray", vmin=0, vmax=2.0e-3, origin="lower")
ax.flat[3].set_title("MD (DKI)")
ax.flat[4].imshow(FA_den[:, :, sli].T, cmap="gray", vmin=0, vmax=0.7, origin="lower")
ax.flat[4].set_title("FA (DKI)")
ax.flat[5].imshow(MK_den[:, :, sli].T, cmap="gray", vmin=0, vmax=1.5, origin="lower")
ax.flat[5].set_title("AD (DKI)")
plt.show()
fig2.savefig("denoised_dki.png")
denoise mppca

In the above figure, the DKI maps obtained from the original data are shown in the upper panels, while the DKI maps from the denoised data are shown in the lower panels. Substantial improvements in measurement robustness can be visually appreciated, particularly for the FA and MK estimates.

Noise standard deviation estimation using the Marchenko-Pastur PCA algorithm#

As mentioned above, the Marcenko-Pastur PCA algorithm can also be used to estimate the image’s noise standard deviation (std). The noise std automatically computed from the mppca function can be returned by setting the optional input parameter return_sigma to True.

denoised_arr, sigma = mppca(data, patch_radius=2, return_sigma=True)

Let’s plot the noise standard deviation estimate:

fig3 = plt.figure("PCA Noise standard deviation estimation")
plt.imshow(sigma[..., sli].T, cmap="gray", origin="lower")
plt.axis("off")
plt.show()
fig3.savefig("pca_sigma.png")
denoise mppca

The above figure shows that the Marchenko-Pastur PCA algorithm computes a 3D spatial varying noise level map. To obtain the mean noise std across all voxels, you can use the following lines of code:

mean_sigma = np.mean(sigma[mask])

print(mean_sigma)
4.6833844

Below we use this mean noise level estimate to compute the nominal SNR of the data (i.e. SNR at b-value=0):

b0 = denoised_arr[..., 0]

mean_signal = np.mean(b0[mask])

snr = mean_signal / mean_sigma

print(snr)
34.56180377412377

References#

Total running time of the script: (7 minutes 28.924 seconds)

Gallery generated by Sphinx-Gallery