dipy_denoise_lpca#

Synopsis#

Workflow wrapping LPCA denoising method.

See [1] for further details about the method.

Usage#

dipy_denoise_lpca [OPTIONS] input_files bvalues_files bvectors_files

Input Parameters#

  • input_files

    Path to the input volumes. This path may contain wildcards to process multiple inputs at once.

  • bvalues_files

    Path to the bvalues files. This path may contain wildcards to use multiple bvalues files at once.

  • bvectors_files

    Path to the bvectors files. This path may contain wildcards to use multiple bvectors files at once.

General Options#

  • --sigma

    Standard deviation of the noise estimated from the data. 0 means sigma value estimation following the algorithm in Manjón et al.[2]. (default: 0)

  • --b0_threshold

    Threshold used to find b0 volumes. (default: 50)

  • --bvecs_tol

    Threshold used to check that norm(bvec) = 1 +/- bvecs_tol b-vectors are unit vectors. (default: 0.01)

  • --patch_radius

    The radius of the local patch to be taken around each voxel (in voxels) For example, for a patch radius with value 2, and assuming the input image is a 3D image, the denoising will take place in blocks of 5x5x5 voxels. (default: 2)

  • --pca_method

    Use either eigenvalue decomposition (‘eig’) or singular value decomposition (‘svd’) for principal component analysis. The default method is ‘eig’ which is faster. However, occasionally ‘svd’ might be more accurate. (default: eig)

  • --tau_factor

    Thresholding of PCA eigenvalues is done by nulling out eigenvalues that are smaller than:

    \[\tau = (\tau_{factor} \sigma)^2\]

    \(\tau_{factor}\) can be change to adjust the relationship between the noise standard deviation and the threshold \(\tau\). If \(\tau_{factor}\) is set to None, it will be automatically calculated using the Marcenko-Pastur distribution :footcite:p`Veraart2016b`. (default: 2.3)

Output Options#

  • --out_dir

    Output directory. (default: current directory)

  • --out_denoised

    Name of the resulting denoised volume. (default: dwi_lpca.nii.gz)

References#

Garyfallidis, E., M. Brett, B. Amirbekian, A. Rokem, S. Van Der Walt, M. Descoteaux, and I. Nimmo-Smith. Dipy, a library for the analysis of diffusion MRI data. Frontiers in Neuroinformatics, 1-18, 2014.