dipy_denoise_lpca#
Synopsis#
Workflow wrapping LPCA denoising method.
See [1] for further details about the method.
Usage#
dipy_denoise_lpca [OPTIONS] input_files bvalues_files bvectors_files
Input Parameters#
input_filesPath to the input volumes. This path may contain wildcards to process multiple inputs at once.
bvalues_filesPath to the bvalues files. This path may contain wildcards to use multiple bvalues files at once.
bvectors_filesPath to the bvectors files. This path may contain wildcards to use multiple bvectors files at once.
General Options#
--sigmaStandard deviation of the noise estimated from the data. 0 means sigma value estimation following the algorithm in Manjón et al.[2]. (default: 0)
--b0_thresholdThreshold used to find b0 volumes. (default: 50)
--bvecs_tolThreshold used to check that norm(bvec) = 1 +/- bvecs_tol b-vectors are unit vectors. (default: 0.01)
--patch_radiusThe radius of the local patch to be taken around each voxel (in voxels) For example, for a patch radius with value 2, and assuming the input image is a 3D image, the denoising will take place in blocks of 5x5x5 voxels. (default: 2)
--pca_methodUse either eigenvalue decomposition (‘eig’) or singular value decomposition (‘svd’) for principal component analysis. The default method is ‘eig’ which is faster. However, occasionally ‘svd’ might be more accurate. (default: eig)
--tau_factorThresholding of PCA eigenvalues is done by nulling out eigenvalues that are smaller than:
\[\tau = (\tau_{factor} \sigma)^2\]\(\tau_{factor}\) can be change to adjust the relationship between the noise standard deviation and the threshold \(\tau\). If \(\tau_{factor}\) is set to None, it will be automatically calculated using the Marcenko-Pastur distribution :footcite:p`Veraart2016b`. (default: 2.3)
Output Options#
--out_dirOutput directory. (default: current directory)
--out_denoisedName of the resulting denoised volume. (default: dwi_lpca.nii.gz)
References#
Garyfallidis, E., M. Brett, B. Amirbekian, A. Rokem, S. Van Der Walt, M. Descoteaux, and I. Nimmo-Smith. Dipy, a library for the analysis of diffusion MRI data. Frontiers in Neuroinformatics, 1-18, 2014.