dipy_denoise_mppca#

Synopsis#

Workflow wrapping Marcenko-Pastur PCA denoising method.

See [1] for further details about the method.

Usage#

dipy_denoise_mppca [OPTIONS] input_files

Input Parameters#

  • input_files

    Path to the input volumes. This path may contain wildcards to process multiple inputs at once.

General Options#

  • --patch_radius

    The radius of the local patch to be taken around each voxel (in voxels) For example, for a patch radius with value 2, and assuming the input image is a 3D image, the denoising will take place in blocks of 5x5x5 voxels. (default: 2)

  • --pca_method

    Use either eigenvalue decomposition (‘eig’) or singular value decomposition (‘svd’) for principal component analysis. The default method is ‘eig’ which is faster. However, occasionally ‘svd’ might be more accurate. (default: eig)

  • --return_sigma

    If true, a noise standard deviation estimate based on the Marcenko-Pastur distribution is returned [2]. (default: False)

Output Options#

  • --out_dir

    Output directory. (default: current directory)

  • --out_denoised

    Name of the resulting denoised volume. (default: dwi_mppca.nii.gz)

  • --out_sigma

    Name of the resulting sigma volume. (default: dwi_sigma.nii.gz)

References#

Garyfallidis, E., M. Brett, B. Amirbekian, A. Rokem, S. Van Der Walt, M. Descoteaux, and I. Nimmo-Smith. Dipy, a library for the analysis of diffusion MRI data. Frontiers in Neuroinformatics, 1-18, 2014.