dipy_denoise_mppca#

Synopsis#

Workflow wrapping Marcenko-Pastur PCA denoising method.

See [1] for further details about the method.

Usage#

dipy_denoise_mppca [OPTIONS] input_files

Input Parameters#

  • input_files

    Path to the input volumes. This path may contain wildcards to process multiple inputs at once.

General Options#

  • --patch_radius

    The radius of the local patch to be taken around each voxel (in voxels) For example, for a patch radius with value 2, and assuming the input image is a 3D image, the denoising will take place in blocks of 5x5x5 voxels.

  • --pca_method

    Use either eigenvalue decomposition (‘eig’) or singular value decomposition (‘svd’) for principal component analysis. The default method is ‘eig’ which is faster. However, occasionally ‘svd’ might be more accurate.

  • --return_sigma

    If true, a noise standard deviation estimate based on the Marcenko-Pastur distribution is returned [2].

Output Options#

  • --out_dir

    Output directory. (default current directory)

  • --out_denoised

    Name of the resulting denoised volume.

  • --out_sigma

    Name of the resulting sigma volume.

References#

Garyfallidis, E., M. Brett, B. Amirbekian, A. Rokem, S. Van Der Walt, M. Descoteaux, and I. Nimmo-Smith. Dipy, a library for the analysis of diffusion MRI data. Frontiers in Neuroinformatics, 1-18, 2014.