dipy_denoise_mppca#
Synopsis#
Workflow wrapping Marcenko-Pastur PCA denoising method.
See [1] for further details about the method.
Usage#
dipy_denoise_mppca [OPTIONS] input_files
Input Parameters#
input_files
Path to the input volumes. This path may contain wildcards to process multiple inputs at once.
General Options#
--patch_radius
The radius of the local patch to be taken around each voxel (in voxels) For example, for a patch radius with value 2, and assuming the input image is a 3D image, the denoising will take place in blocks of 5x5x5 voxels.
--pca_method
Use either eigenvalue decomposition (‘eig’) or singular value decomposition (‘svd’) for principal component analysis. The default method is ‘eig’ which is faster. However, occasionally ‘svd’ might be more accurate.
--return_sigma
If true, a noise standard deviation estimate based on the Marcenko-Pastur distribution is returned [2].
Output Options#
--out_dir
Output directory. (default current directory)
--out_denoised
Name of the resulting denoised volume.
--out_sigma
Name of the resulting sigma volume.
References#
Garyfallidis, E., M. Brett, B. Amirbekian, A. Rokem, S. Van Der Walt, M. Descoteaux, and I. Nimmo-Smith. Dipy, a library for the analysis of diffusion MRI data. Frontiers in Neuroinformatics, 1-18, 2014.