dipy_denoise_mppca#
Synopsis#
Workflow wrapping Marcenko-Pastur PCA denoising method.
See [1] for further details about the method.
Usage#
dipy_denoise_mppca [OPTIONS] input_files
Input Parameters#
input_files
Path to the input volumes. This path may contain wildcards to process multiple inputs at once.
General Options#
--patch_radius
The radius of the local patch to be taken around each voxel (in voxels) For example, for a patch radius with value 2, and assuming the input image is a 3D image, the denoising will take place in blocks of 5x5x5 voxels. (default: 2)
--pca_method
Use either eigenvalue decomposition (‘eig’) or singular value decomposition (‘svd’) for principal component analysis. The default method is ‘eig’ which is faster. However, occasionally ‘svd’ might be more accurate. (default: eig)
--return_sigma
If true, a noise standard deviation estimate based on the Marcenko-Pastur distribution is returned [2]. (default: False)
Output Options#
--out_dir
Output directory. (default: current directory)
--out_denoised
Name of the resulting denoised volume. (default: dwi_mppca.nii.gz)
--out_sigma
Name of the resulting sigma volume. (default: dwi_sigma.nii.gz)
References#
Garyfallidis, E., M. Brett, B. Amirbekian, A. Rokem, S. Van Der Walt, M. Descoteaux, and I. Nimmo-Smith. Dipy, a library for the analysis of diffusion MRI data. Frontiers in Neuroinformatics, 1-18, 2014.