dipy_fit_dti#
Synopsis#
Workflow for tensor reconstruction and for computing DTI metrics using Weighted Least-Squares.
Performs a tensor reconstruction [1], [2] on the files by ‘globing’ input_files and saves the DTI metrics in a directory specified by out_dir.
Usage#
dipy_fit_dti [OPTIONS] input_files bvalues_files bvectors_files mask_files
Input Parameters#
input_filesPath to the input volumes. This path may contain wildcards to process multiple inputs at once.
bvalues_filesPath to the bvalues files. This path may contain wildcards to use multiple bvalues files at once.
bvectors_filesPath to the bvectors files. This path may contain wildcards to use multiple bvectors files at once.
mask_filesPath to the input masks. This path may contain wildcards to use multiple masks at once.
General Options#
--fit_methodcan be one of the following: ‘WLS’ for weighted least squares [3] ‘LS’ or ‘OLS’ for ordinary least squares [3] ‘NLLS’ for non-linear least-squares ‘RT’ or ‘restore’ or ‘RESTORE’ for RESTORE robust tensor fitting [4]. (default: WLS)
--b0_thresholdThreshold used to find b0 volumes. (default: 50)
--bvecs_tolThreshold used to check that norm(bvec) = 1 +/- bvecs_tol (default: 0.01)
--npeaksNumber of peaks/eigen vectors to save in each voxel. DTI generates 3 eigen values and eigen vectors. The principal eigenvector is saved by default. (default: 1)
--sigmaAn estimate of the variance. Chang et al.[4] recommend to use 1.5267 * std(background_noise), where background_noise is estimated from some part of the image known to contain no signal (only noise) b-vectors are unit vectors. (default: None)
--save_metricsList of metrics to save. Possible values: fa, ga, rgb, md, ad, rd, mode, tensor, evec, eval (default: None)
--nifti_tensorWhether the tensor is saved in the standard Nifti format or in an alternate format that is used by other software (e.g., FSL): a 4-dimensional volume (shape (i, j, k, 6)) with Dxx, Dxy, Dxz, Dyy, Dyz, Dzz on the last dimension. (default: True)
--extract_pam_valuesSave or not to save pam volumes as single nifti files. (default: False)
Output Options#
--out_dirOutput directory. (default: current directory)
--out_tensorName of the tensors volume to be saved. Per default, this will be saved following the nifti standard: with the tensor elements as Dxx, Dxy, Dyy, Dxz, Dyz, Dzz on the last (5th) dimension of the volume (shape: (i, j, k, 1, 6)). If nifti_tensor is False, this will be saved in an alternate format that is used by other software (e.g., FSL): a 4-dimensional volume (shape (i, j, k, 6)) with Dxx, Dxy, Dxz, Dyy, Dyz, Dzz on the last dimension. (default: tensors.nii.gz)
--out_faName of the fractional anisotropy volume to be saved. (default: fa.nii.gz)
--out_gaName of the geodesic anisotropy volume to be saved. (default: ga.nii.gz)
--out_rgbName of the color fa volume to be saved. (default: rgb.nii.gz)
--out_mdName of the mean diffusivity volume to be saved. (default: md.nii.gz)
--out_adName of the axial diffusivity volume to be saved. (default: ad.nii.gz)
--out_rdName of the radial diffusivity volume to be saved. (default: rd.nii.gz)
--out_modeName of the mode volume to be saved. (default: mode.nii.gz)
--out_evecName of the eigenvectors volume to be saved. (default: evecs.nii.gz)
--out_evalName of the eigenvalues to be saved. (default: evals.nii.gz)
--out_pamName of the peaks volume to be saved. (default: peaks.pam5)
--out_peaks_dirName of the peaks directions volume to be saved. (default: peaks_dirs.nii.gz)
--out_peaks_valuesName of the peaks values volume to be saved. (default: peaks_values.nii.gz)
--out_peaks_indicesName of the peaks indices volume to be saved. (default: peaks_indices.nii.gz)
--out_sphereSphere vertices name to be saved. (default: sphere.txt)
--out_qaName of the Quantitative Anisotropy to be saved. (default: qa.nii.gz)
References#
Garyfallidis, E., M. Brett, B. Amirbekian, A. Rokem, S. Van Der Walt, M. Descoteaux, and I. Nimmo-Smith. Dipy, a library for the analysis of diffusion MRI data. Frontiers in Neuroinformatics, 1-18, 2014.