dipy_fit_dti#

Synopsis#

Workflow for tensor reconstruction and for computing DTI metrics using Weighted Least-Squares.

Performs a tensor reconstruction [1], [2] on the files by ‘globing’ input_files and saves the DTI metrics in a directory specified by out_dir.

Usage#

dipy_fit_dti [OPTIONS] input_files bvalues_files bvectors_files mask_files

Input Parameters#

  • input_files

    Path to the input volumes. This path may contain wildcards to process multiple inputs at once.

  • bvalues_files

    Path to the bvalues files. This path may contain wildcards to use multiple bvalues files at once.

  • bvectors_files

    Path to the bvectors files. This path may contain wildcards to use multiple bvectors files at once.

  • mask_files

    Path to the input masks. This path may contain wildcards to use multiple masks at once.

General Options#

  • --fit_method

    can be one of the following: ‘WLS’ for weighted least squares [3] ‘LS’ or ‘OLS’ for ordinary least squares [3] ‘NLLS’ for non-linear least-squares ‘RT’ or ‘restore’ or ‘RESTORE’ for RESTORE robust tensor fitting [4].

  • --b0_threshold

    Threshold used to find b0 volumes.

  • --bvecs_tol

    Threshold used to check that norm(bvec) = 1 +/- bvecs_tol

  • --npeaks

    Number of peaks/eigen vectors to save in each voxel. DTI generates 3 eigen values and eigen vectors. The principal eigenvector is saved by default.

  • --sigma

    An estimate of the variance. Chang et al.[4] recommend to use 1.5267 * std(background_noise), where background_noise is estimated from some part of the image known to contain no signal (only noise) b-vectors are unit vectors.

  • --save_metrics

    List of metrics to save. Possible values: fa, ga, rgb, md, ad, rd, mode, tensor, evec, eval

  • --nifti_tensor

    Whether the tensor is saved in the standard Nifti format or in an alternate format that is used by other software (e.g., FSL): a 4-dimensional volume (shape (i, j, k, 6)) with Dxx, Dxy, Dxz, Dyy, Dyz, Dzz on the last dimension.

  • --extract_pam_values

    Save or not to save pam volumes as single nifti files.

Output Options#

  • --out_dir

    Output directory. (default current directory)

  • --out_tensor

    Name of the tensors volume to be saved. Per default, this will be saved following the nifti standard: with the tensor elements as Dxx, Dxy, Dyy, Dxz, Dyz, Dzz on the last (5th) dimension of the volume (shape: (i, j, k, 1, 6)). If nifti_tensor is False, this will be saved in an alternate format that is used by other software (e.g., FSL): a 4-dimensional volume (shape (i, j, k, 6)) with Dxx, Dxy, Dxz, Dyy, Dyz, Dzz on the last dimension.

  • --out_fa

    Name of the fractional anisotropy volume to be saved.

  • --out_ga

    Name of the geodesic anisotropy volume to be saved.

  • --out_rgb

    Name of the color fa volume to be saved.

  • --out_md

    Name of the mean diffusivity volume to be saved.

  • --out_ad

    Name of the axial diffusivity volume to be saved.

  • --out_rd

    Name of the radial diffusivity volume to be saved.

  • --out_mode

    Name of the mode volume to be saved.

  • --out_evec

    Name of the eigenvectors volume to be saved.

  • --out_eval

    Name of the eigenvalues to be saved.

  • --out_pam

    Name of the peaks volume to be saved.

  • --out_peaks_dir

    Name of the peaks directions volume to be saved.

  • --out_peaks_values

    Name of the peaks values volume to be saved.

  • --out_peaks_indices

    Name of the peaks indices volume to be saved.

  • --out_sphere

    Sphere vertices name to be saved.

  • --out_qa

    Name of the Quantitative Anisotropy to be saved.

References#

Garyfallidis, E., M. Brett, B. Amirbekian, A. Rokem, S. Van Der Walt, M. Descoteaux, and I. Nimmo-Smith. Dipy, a library for the analysis of diffusion MRI data. Frontiers in Neuroinformatics, 1-18, 2014.