dipy_fit_dki#
Synopsis#
Workflow for Diffusion Kurtosis reconstruction and for computing DKI metrics.
Performs a DKI reconstruction [1], [2] on the files by ‘globing’ input_files and saves the DKI metrics in a directory specified by out_dir.
Usage#
dipy_fit_dki [OPTIONS] input_files bvalues_files bvectors_files mask_files
Input Parameters#
input_filesPath to the input volumes. This path may contain wildcards to process multiple inputs at once.
bvalues_filesPath to the bvalues files. This path may contain wildcards to use multiple bvalues files at once.
bvectors_filesPath to the bvalues files. This path may contain wildcards to use multiple bvalues files at once.
mask_filesPath to the input masks. This path may contain wildcards to use multiple masks at once. (default: No mask used)
General Options#
--fit_methodcan be one of the following: ‘OLS’ or ‘ULLS’ for ordinary least squares ‘WLS’ or ‘UWLLS’ for weighted ordinary least squares (default: WLS)
--b0_thresholdThreshold used to find b0 volumes. (default: 50.0)
--sigmaAn estimate of the variance. Chang et al.[3] recommend to use 1.5267 * std(background_noise), where background_noise is estimated from some part of the image known to contain no signal (only noise) (default: None)
--save_metricsList of metrics to save. Possible values: fa, ga, rgb, md, ad, rd, mode, tensor, evec, eval (default: None)
--extract_pam_valuesSave or not to save pam volumes as single nifti files. (default: False)
--npeaksNumber of peaks to fit in each voxel. (default: 5)
Output Options#
--out_dirOutput directory. (default: current directory)
--out_dt_tensorName of the tensors volume to be saved. (default: dti_tensors.nii.gz)
--out_dk_tensorName of the tensors volume to be saved. (default: dki_tensors.nii.gz)
--out_faName of the fractional anisotropy volume to be saved. (default: fa.nii.gz)
--out_gaName of the geodesic anisotropy volume to be saved. (default: ga.nii.gz)
--out_rgbName of the color fa volume to be saved. (default: rgb.nii.gz)
--out_mdName of the mean diffusivity volume to be saved. (default: md.nii.gz)
--out_adName of the axial diffusivity volume to be saved. (default: ad.nii.gz)
--out_rdName of the radial diffusivity volume to be saved. (default: rd.nii.gz)
--out_modeName of the mode volume to be saved. (default: mode.nii.gz)
--out_evecName of the eigenvectors volume to be saved. (default: evecs.nii.gz)
--out_evalName of the eigenvalues to be saved. (default: evals.nii.gz)
--out_mkName of the mean kurtosis to be saved. (default: mk.nii.gz)
--out_akName of the axial kurtosis to be saved. (default: ak.nii.gz)
--out_rkName of the radial kurtosis to be saved. (default: rk.nii.gz)
--out_pamName of the peaks volume to be saved. (default: peaks.pam5)
--out_peaks_dirName of the peaks directions volume to be saved. (default: peaks_dirs.nii.gz)
--out_peaks_valuesName of the peaks values volume to be saved. (default: peaks_values.nii.gz)
--out_peaks_indicesName of the peaks indices volume to be saved. (default: peaks_indices.nii.gz)
--out_sphereSphere vertices name to be saved. (default: sphere.txt)
References#
Garyfallidis, E., M. Brett, B. Amirbekian, A. Rokem, S. Van Der Walt, M. Descoteaux, and I. Nimmo-Smith. Dipy, a library for the analysis of diffusion MRI data. Frontiers in Neuroinformatics, 1-18, 2014.