dipy_median_otsu#
Synopsis#
Workflow wrapping the median_otsu segmentation method.
Applies median_otsu segmentation on each file found by ‘globing’ input_files
and saves the results in a directory specified by out_dir
.
Usage#
dipy_median_otsu [OPTIONS] input_files
Input Parameters#
input_files
Path to the input volumes. This path may contain wildcards to process multiple inputs at once.
General Options#
--save_masked
Save mask.
--median_radius
Radius (in voxels) of the applied median filter.
--numpass
Number of pass of the median filter.
--autocrop
If True, the masked input_volumes will also be cropped using the bounding box defined by the masked data. For example, if diffusion images are of 1x1x1 (mm^3) or higher resolution auto-cropping could reduce their size in memory and speed up some of the analysis.
--vol_idx
1D array representing indices of
axis=-1
of a 4D input_volume. From the command line use something like ‘1,2,3-5,7’. This input is required for 4D volumes.--dilate
number of iterations for binary dilation.
--finalize_mask
Whether to remove potential holes or islands. Useful for solving minor errors.
Output Options#
--out_dir
Output directory. (default current directory)
--out_mask
Name of the mask volume to be saved.
--out_masked
Name of the masked volume to be saved.
References#
Garyfallidis, E., M. Brett, B. Amirbekian, A. Rokem, S. Van Der Walt, M. Descoteaux, and I. Nimmo-Smith. Dipy, a library for the analysis of diffusion MRI data. Frontiers in Neuroinformatics, 1-18, 2014.