dipy_recobundles#

Synopsis#

Recognize bundles

See [1] and [2] for further details about the method.

Usage#

dipy_recobundles [OPTIONS] streamline_files model_bundle_files

Input Parameters#

  • streamline_files

    The path of streamline files where you want to recognize bundles.

  • model_bundle_files

    The path of model bundle files.

General Options#

  • --greater_than

    Keep streamlines that have length greater than this value in mm.

  • --less_than

    Keep streamlines have length less than this value in mm.

  • --no_slr

    Don’t enable local Streamline-based Linear Registration.

  • --clust_thr

    MDF distance threshold for all streamlines.

  • --reduction_thr

    Reduce search space by (mm).

  • --reduction_distance

    Reduction distance type can be mdf or mam.

  • --model_clust_thr

    MDF distance threshold for the model bundles.

  • --pruning_thr

    Pruning after matching.

  • --pruning_distance

    Pruning distance type can be mdf or mam.

  • --slr_metric

    Options are None, symmetric, asymmetric or diagonal.

  • --slr_transform

    Transformation allowed. translation, rigid, similarity or scaling.

  • --slr_matrix

    Options are ‘nano’, ‘tiny’, ‘small’, ‘medium’, ‘large’, ‘huge’.

  • --refine

    Enable refine recognized bundle.

  • --r_reduction_thr

    Refine reduce search space by (mm).

  • --r_pruning_thr

    Refine pruning after matching.

  • --no_r_slr

    Don’t enable Refine local Streamline-based Linear Registration.

Output Options#

  • --out_dir

    Output directory. (default current directory)

  • --out_recognized_transf

    Recognized bundle in the space of the model bundle.

  • --out_recognized_labels

    Indices of recognized bundle in the original tractogram.

References#

Garyfallidis, E., M. Brett, B. Amirbekian, A. Rokem, S. Van Der Walt, M. Descoteaux, and I. Nimmo-Smith. Dipy, a library for the analysis of diffusion MRI data. Frontiers in Neuroinformatics, 1-18, 2014.