dipy_recobundles#
Synopsis#
Recognize bundles
Usage#
dipy_recobundles [OPTIONS] streamline_files model_bundle_files
Input Parameters#
streamline_files
The path of streamline files where you want to recognize bundles.
model_bundle_files
The path of model bundle files.
General Options#
--greater_than
Keep streamlines that have length greater than this value in mm.
--less_than
Keep streamlines have length less than this value in mm.
--no_slr
Don’t enable local Streamline-based Linear Registration.
--clust_thr
MDF distance threshold for all streamlines.
--reduction_thr
Reduce search space by (mm).
--reduction_distance
Reduction distance type can be mdf or mam.
--model_clust_thr
MDF distance threshold for the model bundles.
--pruning_thr
Pruning after matching.
--pruning_distance
Pruning distance type can be mdf or mam.
--slr_metric
Options are None, symmetric, asymmetric or diagonal.
--slr_transform
Transformation allowed. translation, rigid, similarity or scaling.
--slr_matrix
Options are ‘nano’, ‘tiny’, ‘small’, ‘medium’, ‘large’, ‘huge’.
--refine
Enable refine recognized bundle.
--r_reduction_thr
Refine reduce search space by (mm).
--r_pruning_thr
Refine pruning after matching.
--no_r_slr
Don’t enable Refine local Streamline-based Linear Registration.
Output Options#
--out_dir
Output directory. (default current directory)
--out_recognized_transf
Recognized bundle in the space of the model bundle.
--out_recognized_labels
Indices of recognized bundle in the original tractogram.
References#
Garyfallidis, E., M. Brett, B. Amirbekian, A. Rokem, S. Van Der Walt, M. Descoteaux, and I. Nimmo-Smith. Dipy, a library for the analysis of diffusion MRI data. Frontiers in Neuroinformatics, 1-18, 2014.