dipy_denoise_patch2self#
Synopsis#
Workflow for Patch2Self denoising method.
See [1] for further details about the method. See [2] for further details about the new method. It applies patch2self denoising [1] on each file found by ‘globing’ input_file
and bval_file
. It saves the results in a directory specified by out_dir
.
Usage#
dipy_denoise_patch2self [OPTIONS] input_files bval_files model
Input Parameters#
input_files
Path to the input volumes. This path may contain wildcards to process multiple inputs at once.
bval_files
bval file associated with the diffusion data.
model
This will determine the algorithm used to solve the set of linear equations underlying this model. If it is a string it needs to be one of the following: {‘ols’, ‘ridge’, ‘lasso’}. Otherwise, it can be an object that inherits from dipy.optimize.SKLearnLinearSolver or an object with a similar interface from Scikit-Learn: sklearn.linear_model.LinearRegression, sklearn.linear_model.Lasso or sklearn.linear_model.Ridge and other objects that inherit from sklearn.base.RegressorMixin. Default: ‘ols’.
General Options#
--b0_threshold
Threshold for considering volumes as b0.
--alpha
Regularization parameter only for ridge regression model.
--verbose
Show progress of Patch2Self and time taken.
--patch_radius
The radius of the local patch to be taken around each voxel
--b0_denoising
Skips denoising b0 volumes if set to False.
--clip_negative_vals
Sets negative values after denoising to 0 using np.clip.
--shift_intensity
Shifts the distribution of intensities per volume to give non-negative values
--ver
Version of the Patch2Self algorithm to use between 1 or 3.
Output Options#
--out_dir
Output directory (default current directory)
--out_denoised
Name of the resulting denoised volume (default: dwi_patch2self.nii.gz)
References#
Garyfallidis, E., M. Brett, B. Amirbekian, A. Rokem, S. Van Der Walt, M. Descoteaux, and I. Nimmo-Smith. Dipy, a library for the analysis of diffusion MRI data. Frontiers in Neuroinformatics, 1-18, 2014.