dipy_denoise_patch2self#
Synopsis#
Workflow for Patch2Self denoising method.
See [1] for further details about the method. See [2] for further details about the new method. It applies patch2self denoising [1] on each file found by ‘globing’ input_file and bval_file. It saves the results in a directory specified by out_dir.
Usage#
dipy_denoise_patch2self [OPTIONS] input_files bval_files model
Input Parameters#
input_filesPath to the input volumes. This path may contain wildcards to process multiple inputs at once.
bval_filesbval file associated with the diffusion data.
modelThis will determine the algorithm used to solve the set of linear equations underlying this model. If it is a string it needs to be one of the following: {‘ols’, ‘ridge’, ‘lasso’}. Otherwise, it can be an object that inherits from dipy.optimize.SKLearnLinearSolver or an object with a similar interface from Scikit-Learn: sklearn.linear_model.LinearRegression, sklearn.linear_model.Lasso or sklearn.linear_model.Ridge and other objects that inherit from sklearn.base.RegressorMixin. Default: ‘ols’. (default: ols)
General Options#
--b0_thresholdThreshold for considering volumes as b0. (default: 50)
--alphaRegularization parameter only for ridge regression model. (default: 1.0)
--verboseShow progress of Patch2Self and time taken. (default: False)
--patch_radiusThe radius of the local patch to be taken around each voxel (default: 0)
--skip_b0_denoisingSkips denoising b0 volumes if set to True. (default: False)
--clip_negative_valsSets negative values after denoising to 0 using np.clip. (default: False)
--skip_shift_intensitySkips shifting the distribution of intensities per volume to give non-negative values if set to True. (default: False)
--verVersion of the Patch2Self algorithm to use between 1 or 3. (default: 3)
Output Options#
--out_dirOutput directory. (default: current directory)
--out_denoisedName of the resulting denoised volume (default: dwi_patch2self.nii.gz) (default: dwi_patch2self.nii.gz)
References#
Garyfallidis, E., M. Brett, B. Amirbekian, A. Rokem, S. Van Der Walt, M. Descoteaux, and I. Nimmo-Smith. Dipy, a library for the analysis of diffusion MRI data. Frontiers in Neuroinformatics, 1-18, 2014.