dipy_denoise_patch2self#

Synopsis#

Workflow for Patch2Self denoising method.

See [1] for further details about the method. See [2] for further details about the new method. It applies patch2self denoising [1] on each file found by ‘globing’ input_file and bval_file. It saves the results in a directory specified by out_dir.

Usage#

dipy_denoise_patch2self [OPTIONS] input_files bval_files model

Input Parameters#

  • input_files

    Path to the input volumes. This path may contain wildcards to process multiple inputs at once.

  • bval_files

    bval file associated with the diffusion data.

  • model

    This will determine the algorithm used to solve the set of linear equations underlying this model. If it is a string it needs to be one of the following: {‘ols’, ‘ridge’, ‘lasso’}. Otherwise, it can be an object that inherits from dipy.optimize.SKLearnLinearSolver or an object with a similar interface from Scikit-Learn: sklearn.linear_model.LinearRegression, sklearn.linear_model.Lasso or sklearn.linear_model.Ridge and other objects that inherit from sklearn.base.RegressorMixin. Default: ‘ols’.

General Options#

  • --b0_threshold

    Threshold for considering volumes as b0.

  • --alpha

    Regularization parameter only for ridge regression model.

  • --verbose

    Show progress of Patch2Self and time taken.

  • --patch_radius

    The radius of the local patch to be taken around each voxel

  • --b0_denoising

    Skips denoising b0 volumes if set to False.

  • --clip_negative_vals

    Sets negative values after denoising to 0 using np.clip.

  • --shift_intensity

    Shifts the distribution of intensities per volume to give non-negative values

  • --ver

    Version of the Patch2Self algorithm to use between 1 or 3.

Output Options#

  • --out_dir

    Output directory (default current directory)

  • --out_denoised

    Name of the resulting denoised volume (default: dwi_patch2self.nii.gz)

References#

Garyfallidis, E., M. Brett, B. Amirbekian, A. Rokem, S. Van Der Walt, M. Descoteaux, and I. Nimmo-Smith. Dipy, a library for the analysis of diffusion MRI data. Frontiers in Neuroinformatics, 1-18, 2014.