Skip to main content
Ctrl+K
DIPY

Site Navigation

    • Overview
    • Tutorials
    • Recipes
    • CLI / Workflows
    • API
    • CLI API
    • Latest

    • DIPY Workshop 2024
    • Past

    • DIPY Workshop 2023
    • DIPY Workshop 2022
    • DIPY Workshop 2021
    • DIPY Workshop 2020
    • DIPY Workshop 2019
    • News

    • Calendar
    • Newsletters
    • Blog
    • Youtube
    • Help

    • Live Chat (Gitter)
    • Github Discussions
    • Team
    • FAQ
    • Mission Statement
    • Releases
    • Cite
    • Glossary
Ctrl+K
  • GitHub
  • Twitter/X
  • YouTube
  • LinkedIn

Site Navigation

    • Overview
    • Tutorials
    • Recipes
    • CLI / Workflows
    • API
    • CLI API
    • Latest

    • DIPY Workshop 2024
    • Past

    • DIPY Workshop 2023
    • DIPY Workshop 2022
    • DIPY Workshop 2021
    • DIPY Workshop 2020
    • DIPY Workshop 2019
    • News

    • Calendar
    • Newsletters
    • Blog
    • Youtube
    • Help

    • Live Chat (Gitter)
    • Github Discussions
    • Team
    • FAQ
    • Mission Statement
    • Releases
    • Cite
    • Glossary
Ctrl+K
  • GitHub
  • Twitter/X
  • YouTube
  • LinkedIn

Section Navigation

  • Quick Start
    • Getting started with DIPY
    • Introduction to Basic Tracking
  • Preprocessing
    • Reslice diffusion datasets
    • Between-volumes Motion Correction on DWI datasets
    • Noise estimation using PIESNO
    • Denoise images using Non-Local Means (NLMEANS)
    • Brain segmentation with median_otsu
    • Patch2Self: Self-Supervised Denoising via Statistical Independence
    • Denoise images using Local PCA via empirical thresholds
    • Gradients and Spheres
    • Denoise images using Adaptive Soft Coefficient Matching (ASCM)
    • SNR estimation for Diffusion-Weighted Images
    • Denoise images using the Marcenko-Pastur PCA algorithm
    • Suppress Gibbs oscillations
  • Reconstruction
    • Applying positivity constraints to Q-space Trajectory Imaging (QTI+)
    • Reconstruct with Diffusion Spectrum Imaging (DSI)
    • Reconstruction of the diffusion signal with the correlation tensor model (CTI)
    • DSI Deconvolution (DSID) vs DSI
    • Calculate SHORE scalar maps
    • Reconstruct with Generalized Q-Sampling Imaging
    • Continuous and analytical diffusion signal modelling with 3D-SHORE
    • Reconstruct with Constant Solid Angle (Q-Ball)
    • Reconstruction with the Sparse Fascicle Model (SFM)
    • Calculate DSI-based scalar maps
    • Reconstruction of the diffusion signal with the kurtosis tensor model (DKI)
    • Reconstruct with Q-space Trajectory Imaging (QTI)
    • Reconstruction of the diffusion signal with DTI (single tensor) model
    • K-fold cross-validation for model comparison
    • Crossing invariant fiber response function with FORECAST model
    • Local reconstruction using the Histological ResDNN
    • Reconstruction of the diffusion signal with the WMTI model (DKI-MICRO)
    • Using the RESTORE algorithm for robust tensor fitting
    • Using the free water elimination model to remove DTI free water contamination
    • Signal Reconstruction Using Spherical Harmonics
    • Reconstruction with Multi-Shell Multi-Tissue CSD
    • Continuous and analytical diffusion signal modelling with MAP-MRI
    • Reconstruction with Constrained Spherical Deconvolution model (CSD)
    • Intravoxel incoherent motion (IVIM)
    • Reconstruction of Bingham Functions from ODFs
    • Mean signal diffusion kurtosis imaging (MSDKI)
    • Reconstruction with Robust and Unbiased Model-BAsed Spherical Deconvolution (RUMBA)
    • Estimating diffusion time dependent q-space indices using qt-dMRI
  • Contextual Enhancement
    • Crossing-preserving contextual enhancement
    • Fiber to bundle coherence measures
  • Fiber Tracking
    • Surface seeding for tractography
    • Parallel Transport Tractography
    • An introduction to the Deterministic Tractography
    • Bootstrap and Closest Peak Direction Getters Example
    • Tracking with Robust Unbiased Model-BAsed Spherical Deconvolution (RUMBA-SD)
    • Tracking with the Sparse Fascicle Model
    • Introduction to Basic Tracking
    • Particle Filtering Tractography
    • An introduction to the Probabilistic Tractography
    • Linear fascicle evaluation (LiFE)
    • Using Various Stopping Criterion for Tractography
  • Streamlines Analysis and Connectivity
    • BUAN Bundle Shape Similarity Score
    • BUAN Bundle Assignment Maps Creation
    • Extracting AFQ tract profiles from segmented bundles
    • Calculation of Outliers with Cluster Confidence Index
    • Streamline length and size reduction
    • Calculate Path Length Map
    • Connectivity Matrices, ROI Intersections and Density Maps
  • Registration
    • Groupwise Bundle Registration
    • Direct Bundle Registration
    • Diffeomorphic Registration with binary and fuzzy images
    • Symmetric Diffeomorphic Registration in 3D
    • Symmetric Diffeomorphic Registration in 2D
    • Nonrigid Bundle Registration with BundleWarp
    • Applying image-based deformations to streamlines
    • Affine Registration with Masks
    • Affine Registration in 3D
  • Segmentation
    • Brain segmentation with median_otsu
    • Tissue Classification using Diffusion MRI with DAM
    • Tractography Clustering with QuickBundles
    • Tissue Classification of a T1-weighted Structural Image
    • Tractography Clustering - Available Metrics
    • Fast Streamline Search
    • Enhancing QuickBundles with different metrics and features
    • Tractography Clustering - Available Features
    • Automatic Fiber Bundle Extraction with RecoBundles
  • Simulation
    • DSI Deconvolution (DSID) vs DSI
    • DKI MultiTensor Simulation
    • MultiTensor Simulation
  • Multiprocessing
    • Parallel reconstruction using Q-Ball
    • Parallel reconstruction using CSD
    • An introduction to the Fast Tracking Module
    • Tractography on the DiSCo Phantom
  • File Formats
    • Read/Write streamline files
  • Visualization
    • Visualization of ROI Surface Rendered with Streamlines
    • Visualize bundles and metrics on bundles
    • Simple volume slicing
    • Advanced interactive visualization
  • Workflows
    • Creating a new workflow.
    • Creating a new combined workflow
  • Examples
  • Quick Start

Quick Start#

Getting started with DIPY

Getting started with DIPY

Introduction to Basic Tracking

Introduction to Basic Tracking

previous

Examples

next

Getting started with DIPY

Never miss an update from us!

Don't worry! we are not going to spam you.

Subscribe
  • GitHub
  • Twitter/X
  • YouTube
  • LinkedIn
About
  • Developers
  • Support
  • Download
  • Get Started
  • Tutorials
  • Videos
Friends
  • Nipy Projects
  • FURY
  • Nibabel
  • Tortoise
Support
  • The department of Intelligent Systems Engineering of Indiana University
  • The National Institute of Biomedical Imaging and Bioengineering, NIH
  • The Gordon and Betty Moore Foundation and the Alfred P. Sloan Foundation, through the University of Washington eScience Institute Data Science Environment
  • Google supported DIPY through the Google Summer of Code Program (2015-2024)
Copyright 2008-2025,DIPY developers. Created using Grg Sphinx Theme and PyData Sphinx Theme.