Note
Go to the end to download the full example code.
Using Various Stopping Criterion for Tractography#
The stopping criterion determines if the tracking stops or continues at each tracking position. The tracking stops when it reaches an ending region (e.g. low FA, gray matter or corticospinal fluid regions) or exits the image boundaries. The tracking also stops if the direction getter has no direction to follow.
Each stopping criterion determines if the stopping is ‘valid’ or ‘invalid’. A streamline is ‘valid’ when the stopping criterion determines if the streamline stops in a position classified as ‘ENDPOINT’ or ‘OUTSIDEIMAGE’. A streamline is ‘invalid’ when it stops in a position classified as ‘TRACKPOINT’ or ‘INVALIDPOINT’. These conditions are described below. The ‘LocalTracking’ generator can be set to output all generated streamlines or only the ‘valid’ ones. See Girard et al.[1] and [2] for more details on these methods.
This example is an extension of the An introduction to the Deterministic Maximum Direction Getter example. We begin by loading the data, creating a seeding mask from white matter voxels of the corpus callosum, fitting a Constrained Spherical Deconvolution (CSD) reconstruction model and creating the maximum deterministic direction getter.
import matplotlib.pyplot as plt
import numpy as np
from dipy.core.gradients import gradient_table
from dipy.data import default_sphere, get_fnames
from dipy.direction import DeterministicMaximumDirectionGetter
from dipy.io.gradients import read_bvals_bvecs
from dipy.io.image import load_nifti, load_nifti_data
from dipy.io.stateful_tractogram import Space, StatefulTractogram
from dipy.io.streamline import save_trk
from dipy.reconst.csdeconv import ConstrainedSphericalDeconvModel, auto_response_ssst
from dipy.reconst.dti import TensorModel, fractional_anisotropy
from dipy.tracking import utils
from dipy.tracking.local_tracking import LocalTracking
from dipy.tracking.stopping_criterion import (
ActStoppingCriterion,
BinaryStoppingCriterion,
ThresholdStoppingCriterion,
)
from dipy.tracking.streamline import Streamlines
from dipy.viz import actor, colormap, has_fury, window
# Enables/disables interactive visualization
interactive = False
hardi_fname, hardi_bval_fname, hardi_bvec_fname = get_fnames(name="stanford_hardi")
label_fname = get_fnames(name="stanford_labels")
_, _, f_pve_wm = get_fnames(name="stanford_pve_maps")
data, affine, hardi_img = load_nifti(hardi_fname, return_img=True)
labels = load_nifti_data(label_fname)
bvals, bvecs = read_bvals_bvecs(hardi_bval_fname, hardi_bvec_fname)
gtab = gradient_table(bvals, bvecs=bvecs)
white_matter = load_nifti_data(f_pve_wm)
seed_mask = labels == 2
seed_mask[white_matter < 0.5] = 0
seeds = utils.seeds_from_mask(seed_mask, affine, density=2)
response, ratio = auto_response_ssst(gtab, data, roi_radii=10, fa_thr=0.7)
csd_model = ConstrainedSphericalDeconvModel(gtab, response)
csd_fit = csd_model.fit(data, mask=white_matter)
dg = DeterministicMaximumDirectionGetter.from_shcoeff(
csd_fit.shm_coeff, max_angle=30.0, sphere=default_sphere
)
Threshold Stopping Criterion#
A scalar map can be used to define where the tracking stops. The threshold stopping criterion uses a scalar map to stop the tracking whenever the interpolated scalar value is lower than a fixed threshold. Here, we show an example using the fractional anisotropy (FA) map of the DTI model. The threshold stopping criterion uses a trilinear interpolation at the tracking position.
Parameters
metric_map: numpy array [:, :, :]
threshold: float
Stopping States
‘ENDPOINT’: stops at a position where metric_map < threshold; the streamline reached the target stopping area.
‘OUTSIDEIMAGE’: stops at a position outside of metric_map; the streamline reached an area outside the image where no direction data is available.
‘TRACKPOINT’: stops at a position because no direction is available; the streamline is stopping where metric_map >= threshold, but there is no valid direction to follow.
‘INVALIDPOINT’: N/A.
tensor_model = TensorModel(gtab)
tenfit = tensor_model.fit(data, mask=labels > 0)
FA = fractional_anisotropy(tenfit.evals)
threshold_criterion = ThresholdStoppingCriterion(FA, 0.2)
fig = plt.figure()
mask_fa = FA.copy()
mask_fa[mask_fa < 0.2] = 0
plt.xticks([])
plt.yticks([])
plt.imshow(
mask_fa[:, :, data.shape[2] // 2].T,
cmap="gray",
origin="lower",
interpolation="nearest",
)
fig.tight_layout()
fig.savefig("threshold_fa.png")
Thresholded fractional anisotropy map.
streamline_generator = LocalTracking(
dg, threshold_criterion, seeds, affine, step_size=0.5, return_all=True
)
streamlines = Streamlines(streamline_generator)
sft = StatefulTractogram(streamlines, hardi_img, Space.RASMM)
save_trk(sft, "tractogram_probabilistic_thresh_all.trk")
if has_fury:
scene = window.Scene()
scene.add(actor.line(streamlines, colors=colormap.line_colors(streamlines)))
window.record(
scene=scene, out_path="tractogram_deterministic_thresh_all.png", size=(800, 800)
)
if interactive:
window.show(scene)
Corpus Callosum using deterministic tractography with a thresholded fractional anisotropy mask.
Binary Stopping Criterion#
A binary mask can be used to define where the tracking stops. The binary stopping criterion stops the tracking whenever the tracking position is outside the mask. Here, we show how to obtain the binary stopping criterion from the white matter mask defined above. The binary stopping criterion uses a nearest-neighborhood interpolation at the tracking position.
Parameters
mask: numpy array [:, :, :]
Stopping States
‘ENDPOINT’: stops at a position where mask = 0; the streamline reached the target stopping area.
‘OUTSIDEIMAGE’: stops at a position outside of metric_map; the streamline reached an area outside the image where no direction data is available.
‘TRACKPOINT’: stops at a position because no direction is available; the streamline is stopping where mask > 0, but there is no valid direction to follow.
‘INVALIDPOINT’: N/A.
binary_criterion = BinaryStoppingCriterion(white_matter == 1)
fig = plt.figure()
plt.xticks([])
plt.yticks([])
fig.tight_layout()
plt.imshow(
white_matter[:, :, data.shape[2] // 2].T,
cmap="gray",
origin="lower",
interpolation="nearest",
)
fig.savefig("white_matter_mask.png")
White matter binary mask.
streamline_generator = LocalTracking(
dg, binary_criterion, seeds, affine, step_size=0.5, return_all=True
)
streamlines = Streamlines(streamline_generator)
sft = StatefulTractogram(streamlines, hardi_img, Space.RASMM)
save_trk(sft, "tractogram_deterministic_binary_all.trk")
if has_fury:
scene = window.Scene()
scene.add(actor.line(streamlines, colors=colormap.line_colors(streamlines)))
window.record(
scene=scene, out_path="tractogram_deterministic_binary_all.png", size=(800, 800)
)
if interactive:
window.show(scene)
- Corpus Callosum using deterministic tractography with a binary white
matter mask.
ACT Stopping Criterion#
Anatomically-constrained tractography (ACT) [2] uses
information from anatomical images to determine when the tractography stops.
The include_map
defines when the streamline reached a ‘valid’ stopping
region (e.g. gray matter partial volume estimation (PVE) map) and the
exclude_map
defines when the streamline reached an ‘invalid’ stopping
region (e.g. corticospinal fluid PVE map). The background of the anatomical
image should be added to the include_map
to keep streamlines exiting
the brain (e.g. through the brain stem). The ACT stopping criterion uses
a trilinear interpolation at the tracking position.
Parameters
include_map
: numpy array[:, :, :]
,exclude_map
: numpy array[:, :, :]
,
Stopping States
‘ENDPOINT’: stops at a position where
include_map
> 0.5; the streamline reached the target stopping area.‘OUTSIDEIMAGE’: stops at a position outside of
include_map
orexclude_map
; the streamline reached an area outside the image where no direction data is available.‘TRACKPOINT’: stops at a position because no direction is available; the streamline is stopping where
include_map
< 0.5 andexclude_map
< 0.5, but there is no valid direction to follow.‘INVALIDPOINT’:
exclude_map
> 0.5; the streamline reach a position which is anatomically not plausible.
f_pve_csf, f_pve_gm, f_pve_wm = get_fnames(name="stanford_pve_maps")
pve_csf_data = load_nifti_data(f_pve_csf)
pve_gm_data = load_nifti_data(f_pve_gm)
pve_wm_data = load_nifti_data(f_pve_wm)
background = np.ones(pve_gm_data.shape)
background[(pve_gm_data + pve_wm_data + pve_csf_data) > 0] = 0
include_map = pve_gm_data
include_map[background > 0] = 1
exclude_map = pve_csf_data
act_criterion = ActStoppingCriterion(include_map, exclude_map)
fig = plt.figure()
plt.subplot(121)
plt.xticks([])
plt.yticks([])
plt.imshow(
include_map[:, :, data.shape[2] // 2].T,
cmap="gray",
origin="lower",
interpolation="nearest",
)
plt.subplot(122)
plt.xticks([])
plt.yticks([])
plt.imshow(
exclude_map[:, :, data.shape[2] // 2].T,
cmap="gray",
origin="lower",
interpolation="nearest",
)
fig.tight_layout()
fig.savefig("act_maps.png")
Include (left) and exclude (right) maps for ACT.
streamline_generator = LocalTracking(
dg, act_criterion, seeds, affine, step_size=0.5, return_all=True
)
streamlines = Streamlines(streamline_generator)
sft = StatefulTractogram(streamlines, hardi_img, Space.RASMM)
save_trk(sft, "tractogram_deterministic_act_all.trk")
if has_fury:
scene = window.Scene()
scene.add(actor.line(streamlines, colors=colormap.line_colors(streamlines)))
window.record(
scene=scene, out_path="tractogram_deterministic_act_all.png", size=(800, 800)
)
if interactive:
window.show(scene)
- Corpus Callosum using deterministic tractography with ACT stopping
criterion.
streamline_generator = LocalTracking(
dg, act_criterion, seeds, affine, step_size=0.5, return_all=False
)
streamlines = Streamlines(streamline_generator)
sft = StatefulTractogram(streamlines, hardi_img, Space.RASMM)
save_trk(sft, "tractogram_deterministic_act_valid.trk")
if has_fury:
scene = window.Scene()
scene.add(actor.line(streamlines, colors=colormap.line_colors(streamlines)))
window.record(
scene=scene, out_path="tractogram_deterministic_act_valid.png", size=(800, 800)
)
if interactive:
window.show(scene)
Corpus Callosum using deterministic tractography with ACT stopping criterion. Streamlines ending in gray matter region only.
The threshold and binary stopping criterion use respectively a scalar map and a binary mask to stop the tracking. The ACT stopping criterion use partial volume fraction (PVE) maps from an anatomical image to stop the tracking. Additionally, the ACT stopping criterion determines if the tracking stopped in expected regions (e.g. gray matter) and allows the user to get only streamlines stopping in those regions.
Notes#
Currently,the proposed method that cuts streamlines going through subcortical gray matter regions is not implemented. The backtracking technique for streamlines reaching INVALIDPOINT is not implemented either [2].
References#
Total running time of the script: (0 minutes 45.614 seconds)